domain of f(x)=(2x+3)/(3x-4)
|
domain\:f(x)=\frac{2x+3}{3x-4}
|
domain of log_{3}(x^2)
|
domain\:\log_{3}(x^{2})
|
domain of f(x)= x/(ln(x-1)-1)
|
domain\:f(x)=\frac{x}{\ln(x-1)-1}
|
domain of y=4csc(x-pi/6)+sqrt(5)
|
domain\:y=4\csc(x-\frac{π}{6})+\sqrt{5}
|
extreme points of f(x)=x^3-12x+2
|
extreme\:points\:f(x)=x^{3}-12x+2
|
domain of f(x)=(10x+7)/(7x-4)
|
domain\:f(x)=\frac{10x+7}{7x-4}
|
domain of f(x)= 9/(25-x^2)
|
domain\:f(x)=\frac{9}{25-x^{2}}
|
monotone intervals f(x)=sqrt(x-3)-1
|
monotone\:intervals\:f(x)=\sqrt{x-3}-1
|
domain of f(x)=20x-1740
|
domain\:f(x)=20x-1740
|
domain of x/2-3
|
domain\:\frac{x}{2}-3
|
domain of f(x)=(sqrt(x^2-5x+6))/(x+4)
|
domain\:f(x)=\frac{\sqrt{x^{2}-5x+6}}{x+4}
|
domain of ln|x-3|*sqrt((x-1)(5-x))
|
domain\:\ln\left|x-3\right|\cdot\:\sqrt{(x-1)(5-x)}
|
domain of f(x)=2x^2-8
|
domain\:f(x)=2x^{2}-8
|
domain of f(x)=2e^{x-2}+3
|
domain\:f(x)=2e^{x-2}+3
|
domain of f(x)=2x^2-12x+13
|
domain\:f(x)=2x^{2}-12x+13
|
domain of f(x)=ln(x-4)+sqrt(x)
|
domain\:f(x)=\ln(x-4)+\sqrt{x}
|
domain of f(x)=log_{7}(x+2)
|
domain\:f(x)=\log_{7}(x+2)
|
range of f(x)=4-x
|
range\:f(x)=4-x
|
domain of f(x)=\sqrt[3]{y+2}
|
domain\:f(x)=\sqrt[3]{y+2}
|
domain of f(x)=2x^2-4x-1
|
domain\:f(x)=2x^{2}-4x-1
|
domain of ln(u)
|
domain\:\ln(u)
|
domain of f(x)= 1/2 tan(x)
|
domain\:f(x)=\frac{1}{2}\tan(x)
|
domain of f(x)=(2x^2)/(sqrt(6x^2-x-2))
|
domain\:f(x)=\frac{2x^{2}}{\sqrt{6x^{2}-x-2}}
|
domain of f(x)=sqrt(5-2x)+4
|
domain\:f(x)=\sqrt{5-2x}+4
|
domain of f(x)=(sqrt(x+5))/(sqrt(x^2-9))
|
domain\:f(x)=\frac{\sqrt{x+5}}{\sqrt{x^{2}-9}}
|
domain of f(x)=2x+3,-2<= x<1
|
domain\:f(x)=2x+3,-2\le\:x<1
|
domain of f(x)=sqrt(x-4x^3)
|
domain\:f(x)=\sqrt{x-4x^{3}}
|
domain of f(x)=sqrt(((4x+3))/((2x-1)))
|
domain\:f(x)=\sqrt{\frac{(4x+3)}{(2x-1)}}
|
intercepts of f(x)=-2x
|
intercepts\:f(x)=-2x
|
domain of f(x)=sqrt(x^2+4x)
|
domain\:f(x)=\sqrt{x^{2}+4x}
|
domain of f(x)=(2x-7)/3
|
domain\:f(x)=\frac{2x-7}{3}
|
domain of 2/3 x-12
|
domain\:\frac{2}{3}x-12
|
domain of e^{2x}-3
|
domain\:e^{2x}-3
|
domain of f(x)=|8+6x|
|
domain\:f(x)=\left|8+6x\right|
|
domain of y=(x^2+x)/(x+1)
|
domain\:y=\frac{x^{2}+x}{x+1}
|
domain of f(x)=sqrt(x-2)-1/(sqrt(3-x))
|
domain\:f(x)=\sqrt{x-2}-\frac{1}{\sqrt{3-x}}
|
domain of ln(x/(x-3))
|
domain\:\ln(\frac{x}{x-3})
|
domain of f(x)=sqrt(sin(2x))
|
domain\:f(x)=\sqrt{\sin(2x)}
|
line (10000,1000),(10000,2500)
|
line\:(10000,1000),(10000,2500)
|
domain of f(x)=6x-1248
|
domain\:f(x)=6x-1248
|
domain of (2x-6)/5
|
domain\:\frac{2x-6}{5}
|
domain of f(x)=(x-3)/(2x-7)
|
domain\:f(x)=\frac{x-3}{2x-7}
|
domain of 12x-2148
|
domain\:12x-2148
|
domain of f(x)=(3x+2)/(2x-5)
|
domain\:f(x)=\frac{3x+2}{2x-5}
|
domain of f(x)=|x-2|-1
|
domain\:f(x)=\left|x-2\right|-1
|
domain of y=1-x-2sqrt(1-x)
|
domain\:y=1-x-2\sqrt{1-x}
|
domain of f(x)=3x^4-4x^3+1
|
domain\:f(x)=3x^{4}-4x^{3}+1
|
domain of log_{2}(x-3)+2
|
domain\:\log_{2}(x-3)+2
|
domain of 1/(11.25x)-1/90
|
domain\:\frac{1}{11.25x}-\frac{1}{90}
|
inverse of f(x)=x^2-4x,x<= 2
|
inverse\:f(x)=x^{2}-4x,x\le\:2
|
domain of 3-\sqrt[3]{x-2}
|
domain\:3-\sqrt[3]{x-2}
|
domain of y=(sqrt(1-x^2))^x
|
domain\:y=(\sqrt{1-x^{2}})^{x}
|
domain of f(x)=(2x+5)/(x-3)
|
domain\:f(x)=\frac{2x+5}{x-3}
|
domain of x(x+3)^{2/5}
|
domain\:x(x+3)^{\frac{2}{5}}
|
domain of f(x)=(1+x)/(2-x)
|
domain\:f(x)=\frac{1+x}{2-x}
|
domain of f(x)=sqrt(9x-x^3)
|
domain\:f(x)=\sqrt{9x-x^{3}}
|
domain of f(x)=(x^2)/(4-x^2)
|
domain\:f(x)=\frac{x^{2}}{4-x^{2}}
|
domain of 12x^3-5x^2-11x+6
|
domain\:12x^{3}-5x^{2}-11x+6
|
domain of f(x)=xln(x^2)
|
domain\:f(x)=x\ln(x^{2})
|
domain of f(x)=12+log_{10}(1-x^2)
|
domain\:f(x)=12+\log_{10}(1-x^{2})
|
slope intercept of x-y=-1
|
slope\:intercept\:x-y=-1
|
domain of f(x)=(2x+3)/(x-7)
|
domain\:f(x)=\frac{2x+3}{x-7}
|
domain of f(x)=(x-2)/(x^2-5x+6)
|
domain\:f(x)=\frac{x-2}{x^{2}-5x+6}
|
domain of yx^2-4y-x^2=0
|
domain\:yx^{2}-4y-x^{2}=0
|
domain of f(x)=x^4-x^3-6x^2
|
domain\:f(x)=x^{4}-x^{3}-6x^{2}
|
domain of y=5-3x
|
domain\:y=5-3x
|
domain of f(x)= x/(sqrt(x^2+2x-8))
|
domain\:f(x)=\frac{x}{\sqrt{x^{2}+2x-8}}
|
domain of f(x)=(sqrt(20-4x))/2
|
domain\:f(x)=\frac{\sqrt{20-4x}}{2}
|
domain of y=(sqrt(2x+14))/(x^2-49)
|
domain\:y=\frac{\sqrt{2x+14}}{x^{2}-49}
|
midpoint (-2,7)(-2,-2)
|
midpoint\:(-2,7)(-2,-2)
|
domain of f(x)=(x+1)/(x^2-x-2)
|
domain\:f(x)=\frac{x+1}{x^{2}-x-2}
|
domain of f(x)=(x+6)/(x^2-4)
|
domain\:f(x)=\frac{x+6}{x^{2}-4}
|
domain of (x-1)^3
|
domain\:(x-1)^{3}
|
domain of f(x)=(ln(x+5))/(x^2-2x-3)
|
domain\:f(x)=\frac{\ln(x+5)}{x^{2}-2x-3}
|
domain of h(x)=x^2+16
|
domain\:h(x)=x^{2}+16
|
domain of f(x)=(2/3)^{x-3}-2
|
domain\:f(x)=(\frac{2}{3})^{x-3}-2
|
domain of R(x,y)=yx^2-4y-x^2=0
|
domain\:R(x,y)=yx^{2}-4y-x^{2}=0
|
domain of f(x)=sqrt(((x^2-1))/(|x-2|))
|
domain\:f(x)=\sqrt{\frac{(x^{2}-1)}{\left|x-2\right|}}
|
domain of (8x+5)/(2-5x)
|
domain\:\frac{8x+5}{2-5x}
|
range of sqrt(x^2+8x)
|
range\:\sqrt{x^{2}+8x}
|
domain of-x^6+7x^2+9x+12
|
domain\:-x^{6}+7x^{2}+9x+12
|
domain of f(x)= 2/(x^2-x-2)
|
domain\:f(x)=\frac{2}{x^{2}-x-2}
|
domain of-3(x-1)^2+2
|
domain\:-3(x-1)^{2}+2
|
domain of (x^2)/(1+x^2)
|
domain\:\frac{x^{2}}{1+x^{2}}
|
domain of (2x^2-3x)/(x^2-x-12)
|
domain\:\frac{2x^{2}-3x}{x^{2}-x-12}
|
domain of f(x)=(4x+1)/(x+2)
|
domain\:f(x)=\frac{4x+1}{x+2}
|
domain of f(x)= 2/(x^2+2x+1)
|
domain\:f(x)=\frac{2}{x^{2}+2x+1}
|
domain of f(x)=sqrt(x/(4-x^2))
|
domain\:f(x)=\sqrt{\frac{x}{4-x^{2}}}
|
range of f(x)=ln(x)+7
|
range\:f(x)=\ln(x)+7
|
domain of 6t^2+500t+8000
|
domain\:6t^{2}+500t+8000
|
domain of f(x)=-2x(x-2)(x-5)
|
domain\:f(x)=-2x(x-2)(x-5)
|
domain of f(x)=(sqrt(x^2-x-6))/(x^2-x-2)
|
domain\:f(x)=\frac{\sqrt{x^{2}-x-6}}{x^{2}-x-2}
|
domain of f(t)= 1/t
|
domain\:f(t)=\frac{1}{t}
|
domain of e^{arcsin(x)}
|
domain\:e^{\arcsin(x)}
|
domain of f(x)=(x+5)/(x^2-3x)
|
domain\:f(x)=\frac{x+5}{x^{2}-3x}
|
domain of f(x)=sqrt(-2x+12)
|
domain\:f(x)=\sqrt{-2x+12}
|
domain of f(x)=sqrt(4x-1)
|
domain\:f(x)=\sqrt{4x-1}
|
domain of-x^2+8x-15
|
domain\:-x^{2}+8x-15
|
domain of f(x)=(2x+5)/(3x^2-10x-8)
|
domain\:f(x)=\frac{2x+5}{3x^{2}-10x-8}
|
domain of f(x)=sqrt(20-1/2 x)
|
domain\:f(x)=\sqrt{20-\frac{1}{2}x}
|