domain of f(x)=ln(x^2-10x)
|
domain\:f(x)=\ln(x^{2}-10x)
|
domain of g(x)=x+2
|
domain\:g(x)=x+2
|
domain of-3+(2x)/3
|
domain\:-3+\frac{2x}{3}
|
domain of f(x)=sqrt((x^2-3x-4)/(-x+5))
|
domain\:f(x)=\sqrt{\frac{x^{2}-3x-4}{-x+5}}
|
domain of f(x)=-sqrt(4-x^2),0<= x<2
|
domain\:f(x)=-\sqrt{4-x^{2}},0\le\:x<2
|
domain of y=-log_{2}(3(x-2))+4
|
domain\:y=-\log_{2}(3(x-2))+4
|
domain of sqrt(25-5^x)
|
domain\:\sqrt{25-5^{x}}
|
domain of f(x)=-5x+3,-2<= x<= 4
|
domain\:f(x)=-5x+3,-2\le\:x\le\:4
|
domain of f(x)=12x^3-5x^2-11x+6
|
domain\:f(x)=12x^{3}-5x^{2}-11x+6
|
extreme points of f(x)=sqrt(x)-2
|
extreme\:points\:f(x)=\sqrt{x}-2
|
inverse of cos(5x)
|
inverse\:\cos(5x)
|
domain of f(x)= 2/3+(sqrt(4-x^2))/(x-3)
|
domain\:f(x)=\frac{2}{3}+\frac{\sqrt{4-x^{2}}}{x-3}
|
domain of f(x)= 7/(x+1)
|
domain\:f(x)=\frac{7}{x+1}
|
domain of f(x)=4x^2+12x+9
|
domain\:f(x)=4x^{2}+12x+9
|
domain of 1/(2xsqrt(3+ln(x)))
|
domain\:\frac{1}{2x\sqrt{3+\ln(x)}}
|
domain of (x^2+5x+6)/(x^2-4)
|
domain\:\frac{x^{2}+5x+6}{x^{2}-4}
|
domain of f(x)=sqrt(3-2x)-4
|
domain\:f(x)=\sqrt{3-2x}-4
|
domain of sqrt(-3x+9)
|
domain\:\sqrt{-3x+9}
|
domain of f(x)=(2x+3)/(3x-2)
|
domain\:f(x)=\frac{2x+3}{3x-2}
|
domain of f(x)=(10-3x-x^2)/(|x-2|)
|
domain\:f(x)=\frac{10-3x-x^{2}}{\left|x-2\right|}
|
domain of f(x)=-2x^2+2x+82
|
domain\:f(x)=-2x^{2}+2x+82
|
domain of f(x)=\sqrt[4]{25-x^2}
|
domain\:f(x)=\sqrt[4]{25-x^{2}}
|
domain of f(x)=-36,0<= x<= 360
|
domain\:f(x)=-36,0\le\:x\le\:360
|
domain of sqrt(x^2-4)+sqrt(x^2+5x+6)
|
domain\:\sqrt{x^{2}-4}+\sqrt{x^{2}+5x+6}
|
domain of (x+1)/(x^2-2x+1)
|
domain\:\frac{x+1}{x^{2}-2x+1}
|
domain of f(t)=sqrt(4-t^2)
|
domain\:f(t)=\sqrt{4-t^{2}}
|
domain of |x^2-4x+3|
|
domain\:\left|x^{2}-4x+3\right|
|
domain of sqrt(6x-6)
|
domain\:\sqrt{6x-6}
|
domain of f(x)=|x|+|x-1|+|x-2|
|
domain\:f(x)=\left|x\right|+\left|x-1\right|+\left|x-2\right|
|
domain of f(x)=sqrt(-2x+8)
|
domain\:f(x)=\sqrt{-2x+8}
|
domain of f(x)= 3/(x+5)
|
domain\:f(x)=\frac{3}{x+5}
|
domain of-1/(x-1)
|
domain\:-\frac{1}{x-1}
|
domain of f(x)=sqrt(x)+10
|
domain\:f(x)=\sqrt{x}+10
|
domain of f(x)= 1/(sqrt(2+x))
|
domain\:f(x)=\frac{1}{\sqrt{2+x}}
|
domain of g(x)=(x+4)/(x^2-9)
|
domain\:g(x)=\frac{x+4}{x^{2}-9}
|
domain of y=sqrt(x^2-4x-5)
|
domain\:y=\sqrt{x^{2}-4x-5}
|
domain of y=2x^2-8x+8
|
domain\:y=2x^{2}-8x+8
|
domain of 5*(1/4)^x
|
domain\:5\cdot\:(\frac{1}{4})^{x}
|
domain of f(x)=(x-3)/(3x+2)
|
domain\:f(x)=\frac{x-3}{3x+2}
|
domain of f(x)=2-0.4x
|
domain\:f(x)=2-0.4x
|
domain of f(x)=(3x-5)/x
|
domain\:f(x)=\frac{3x-5}{x}
|
domain of f(x)= x/(x^3+8)
|
domain\:f(x)=\frac{x}{x^{3}+8}
|
distance (2,-1)(3,4)
|
distance\:(2,-1)(3,4)
|
domain of f(x)=(sqrt(6x-2)-3)/(x^2+1)
|
domain\:f(x)=\frac{\sqrt{6x-2}-3}{x^{2}+1}
|
domain of f(x)= 7/(7x)
|
domain\:f(x)=\frac{7}{7x}
|
domain of f(x)=(17x-6)/(6x+4)
|
domain\:f(x)=\frac{17x-6}{6x+4}
|
domain of 1-|x|
|
domain\:1-\left|x\right|
|
domain of f(x)=sqrt(arccos(x^2-1))
|
domain\:f(x)=\sqrt{\arccos(x^{2}-1)}
|
domain of f(x)=(x-8)/(3x-4)
|
domain\:f(x)=\frac{x-8}{3x-4}
|
domain of 2x^3+2x-1-(2x^2-5x-6)
|
domain\:2x^{3}+2x-1-(2x^{2}-5x-6)
|
domain of f(x)=-(x+5)^2-4
|
domain\:f(x)=-(x+5)^{2}-4
|
asymptotes of f(x)=(sin(x))/x
|
asymptotes\:f(x)=\frac{\sin(x)}{x}
|
domain of y<2x
|
domain\:y<2x
|
domain of (sqrt(1-2x))-(sqrt(3-2x-x^2))
|
domain\:(\sqrt{1-2x})-(\sqrt{3-2x-x^{2}})
|
domain of f(x)=sqrt(5x+5)
|
domain\:f(x)=\sqrt{5x+5}
|
domain of 2/(x^2-6x+8)
|
domain\:\frac{2}{x^{2}-6x+8}
|
domain of (2x-7)/3
|
domain\:\frac{2x-7}{3}
|
domain of (x+1)/(2x-3)
|
domain\:\frac{x+1}{2x-3}
|
domain of sqrt((x+1)^2)+2
|
domain\:\sqrt{(x+1)^{2}}+2
|
domain of 2/(sqrt(-x^2+4x+5))
|
domain\:\frac{2}{\sqrt{-x^{2}+4x+5}}
|
domain of ln^{1/x}(x)
|
domain\:\ln^{\frac{1}{x}}(x)
|
domain of f(x)=1+sqrt(x+2)
|
domain\:f(x)=1+\sqrt{x+2}
|
domain of 4*x+3
|
domain\:4\cdot\:x+3
|
domain of f(x)=sqrt(2+ln(x))
|
domain\:f(x)=\sqrt{2+\ln(x)}
|
domain of y=(x-7)/(x+12)
|
domain\:y=\frac{x-7}{x+12}
|
domain of (x^7)/3+3
|
domain\:\frac{x^{7}}{3}+3
|
domain of f(x)=-x/(sqrt(-x-2))
|
domain\:f(x)=-\frac{x}{\sqrt{-x-2}}
|
domain of f(x)= 1/(2x^2-8)
|
domain\:f(x)=\frac{1}{2x^{2}-8}
|
domain of (x^2-8x+15)/(x+3)
|
domain\:\frac{x^{2}-8x+15}{x+3}
|
domain of-4x+10
|
domain\:-4x+10
|
domain of f(x)=5x^6
|
domain\:f(x)=5x^{6}
|
domain of f(x)=9+(8+x)^{1/2}
|
domain\:f(x)=9+(8+x)^{\frac{1}{2}}
|
domain of (ln(2x))/x
|
domain\:\frac{\ln(2x)}{x}
|
domain of f(x)= 1/(sqrt(9+x))
|
domain\:f(x)=\frac{1}{\sqrt{9+x}}
|
domain of f(x)=5x+25
|
domain\:f(x)=5x+25
|
domain of y=x^4-4x^3+14/3 x^2-9/7 x+2
|
domain\:y=x^{4}-4x^{3}+\frac{14}{3}x^{2}-\frac{9}{7}x+2
|
domain of (7x+9)/(x^3+8)
|
domain\:\frac{7x+9}{x^{3}+8}
|
domain of f(x)=-(x-6)^2+2
|
domain\:f(x)=-(x-6)^{2}+2
|
domain of f(x)=-(2^{x-1})
|
domain\:f(x)=-(2^{x-1})
|
domain of f(x)=(x-2)^2+Y(x)^2=25
|
domain\:f(x)=(x-2)^{2}+Y(x)^{2}=25
|
domain of f(x)=2sqrt(x^2-9)
|
domain\:f(x)=2\sqrt{x^{2}-9}
|
inflection points of f(x)=16x^4-96x^2
|
inflection\:points\:f(x)=16x^{4}-96x^{2}
|
domain of f(x)=sqrt(2x-2)-3
|
domain\:f(x)=\sqrt{2x-2}-3
|
domain of (x-1)e^{-2x}
|
domain\:(x-1)e^{-2x}
|
domain of x/(1+|x|)
|
domain\:\frac{x}{1+\left|x\right|}
|
domain of ln(x^2+3x)
|
domain\:\ln(x^{2}+3x)
|
domain of f(x)=sqrt(7x-x^2)
|
domain\:f(x)=\sqrt{7x-x^{2}}
|
domain of f(x)=log_{2}(x(2x-3))
|
domain\:f(x)=\log_{2}(x(2x-3))
|
domain of f(x)=(1955)/(2-|x-1|-|x-3|)
|
domain\:f(x)=\frac{1955}{2-\left|x-1\right|-\left|x-3\right|}
|
domain of sqrt(5+4x-x^2)
|
domain\:\sqrt{5+4x-x^{2}}
|
domain of f(x)=sqrt((x^2+2)/(x^2-2))
|
domain\:f(x)=\sqrt{\frac{x^{2}+2}{x^{2}-2}}
|
domain of y=sqrt(4-x)
|
domain\:y=\sqrt{4-x}
|
domain of \sqrt[3]{x}+8
|
domain\:\sqrt[3]{x}+8
|
domain of f(x)=sqrt((2-x)/x)
|
domain\:f(x)=\sqrt{\frac{2-x}{x}}
|
domain of 4x-x^2
|
domain\:4x-x^{2}
|
domain of sqrt(3-2x)+sqrt(1-x)
|
domain\:\sqrt{3-2x}+\sqrt{1-x}
|
domain of f(x)= 1/(sqrt(-x^2+9x))
|
domain\:f(x)=\frac{1}{\sqrt{-x^{2}+9x}}
|
domain of-(x-3)^5(x+1)^4
|
domain\:-(x-3)^{5}(x+1)^{4}
|
domain of sin(log_{10}(x))
|
domain\:\sin(\log_{10}(x))
|
domain of f(x)=-log_{2}(3(x-2))+4
|
domain\:f(x)=-\log_{2}(3(x-2))+4
|