domain of f(x)=x^2+2x-7
|
domain\:f(x)=x^{2}+2x-7
|
domain of f(x)=x^x
|
domain\:f(x)=x^{x}
|
domain of f(x)=x^2+2x-9
|
domain\:f(x)=x^{2}+2x-9
|
domain of-2/5
|
domain\:-\frac{2}{5}
|
domain of f(x)=2x-8,-2<= x<= 10
|
domain\:f(x)=2x-8,-2\le\:x\le\:10
|
domain of f(x)=-sqrt(-x-2)
|
domain\:f(x)=-\sqrt{-x-2}
|
domain of f(x)=-1/2 (x+4)^2+8
|
domain\:f(x)=-\frac{1}{2}(x+4)^{2}+8
|
domain of 1/3
|
domain\:\frac{1}{3}
|
domain of (x-4)/(2x+2)
|
domain\:\frac{x-4}{2x+2}
|
domain of sqrt((12+x-x^2)/(|2x-5|))
|
domain\:\sqrt{\frac{12+x-x^{2}}{\left|2x-5\right|}}
|
domain of f(x)=sqrt((x-6)(x+3))
|
domain\:f(x)=\sqrt{(x-6)(x+3)}
|
domain of-3/(x-1)
|
domain\:-\frac{3}{x-1}
|
range of f(x)= 3/(2x-6)+7
|
range\:f(x)=\frac{3}{2x-6}+7
|
extreme points of (-2x^2)/((x-3)(x+2))
|
extreme\:points\:\frac{-2x^{2}}{(x-3)(x+2)}
|
domain of 3^{x+1}
|
domain\:3^{x+1}
|
domain of f(x)=(2x)/(sqrt(x^2-1))
|
domain\:f(x)=\frac{2x}{\sqrt{x^{2}-1}}
|
domain of x^2y-4y+x=0
|
domain\:x^{2}y-4y+x=0
|
domain of f(x)=x^3-9x^2+24x-7
|
domain\:f(x)=x^{3}-9x^{2}+24x-7
|
domain of f(x)=sqrt(z)
|
domain\:f(x)=\sqrt{z}
|
domain of x^2+2x+3
|
domain\:x^{2}+2x+3
|
domain of f(x)= x/2-5
|
domain\:f(x)=\frac{x}{2}-5
|
domain of f(x)=sqrt(-x-4)
|
domain\:f(x)=\sqrt{-x-4}
|
domain of 7x-1
|
domain\:7x-1
|
domain of f(x)=(x+3)/(x^2+4)
|
domain\:f(x)=\frac{x+3}{x^{2}+4}
|
slope of 6x+2y=-2
|
slope\:6x+2y=-2
|
domain of log_{4}(5x-9)
|
domain\:\log_{4}(5x-9)
|
domain of y=sqrt(2x+6)+sqrt(2-x)
|
domain\:y=\sqrt{2x+6}+\sqrt{2-x}
|
domain of f(x)=(x^2-64)/(x-8)
|
domain\:f(x)=\frac{x^{2}-64}{x-8}
|
domain of f(x)=sqrt(xln(x))
|
domain\:f(x)=\sqrt{x\ln(x)}
|
domain of 7ln(19-x)+12ln(x+6)
|
domain\:7\ln(19-x)+12\ln(x+6)
|
domain of log_{2}(6-2x)
|
domain\:\log_{2}(6-2x)
|
domain of f(x)= 2/((3x+1))
|
domain\:f(x)=\frac{2}{(3x+1)}
|
domain of h(x)= 1/(x-8)
|
domain\:h(x)=\frac{1}{x-8}
|
domain of sqrt(5/(3x-1))
|
domain\:\sqrt{\frac{5}{3x-1}}
|
domain of y=pi-2
|
domain\:y=π-2
|
midpoint (-4,-8)(1,-5)
|
midpoint\:(-4,-8)(1,-5)
|
domain of f(x)=sqrt(x^2-x+6)
|
domain\:f(x)=\sqrt{x^{2}-x+6}
|
domain of (-8x\sqrt[3]{x+2})/(ln(-3x+1))
|
domain\:\frac{-8x\sqrt[3]{x+2}}{\ln(-3x+1)}
|
domain of (x-6)/(x^2-3x-18)
|
domain\:\frac{x-6}{x^{2}-3x-18}
|
domain of (2x^2+4x-6)/(4x^2+16x+12)
|
domain\:\frac{2x^{2}+4x-6}{4x^{2}+16x+12}
|
domain of f(x)=log_{1/5}(x^2-x-12)
|
domain\:f(x)=\log_{\frac{1}{5}}(x^{2}-x-12)
|
domain of (x-9)/(x^2-81)
|
domain\:\frac{x-9}{x^{2}-81}
|
domain of f(x)=tan(x)-3
|
domain\:f(x)=\tan(x)-3
|
domain of f(x)=sqrt((2x+3)/(x-9))
|
domain\:f(x)=\sqrt{\frac{2x+3}{x-9}}
|
inverse of f(x)=2x-11
|
inverse\:f(x)=2x-11
|
domain of f(x)=\sqrt[3]{x}(x-3)
|
domain\:f(x)=\sqrt[3]{x}(x-3)
|
domain of 1000
|
domain\:1000
|
domain of f(x)=log_{3}(x-1)+3
|
domain\:f(x)=\log_{3}(x-1)+3
|
domain of f(x)=(3x-ln(5x))/x
|
domain\:f(x)=\frac{3x-\ln(5x)}{x}
|
domain of f(x)=3x-3+4-x^2-11-x-2
|
domain\:f(x)=3x-3+4-x^{2}-11-x-2
|
domain of f(x)=-3x^2+6x-1
|
domain\:f(x)=-3x^{2}+6x-1
|
domain of f(x)=(x-4)/(5-2x)
|
domain\:f(x)=\frac{x-4}{5-2x}
|
slope of 3/5 x+25y=10
|
slope\:\frac{3}{5}x+25y=10
|
domain of-2/5 x+6
|
domain\:-\frac{2}{5}x+6
|
domain of 3x^2+5
|
domain\:3x^{2}+5
|
domain of f(x)=(x-7)/(2x+10)
|
domain\:f(x)=\frac{x-7}{2x+10}
|
domain of g(x)= 1/(x-3)+6
|
domain\:g(x)=\frac{1}{x-3}+6
|
domain of f(x)=x^2(x+1)^3(x-3)
|
domain\:f(x)=x^{2}(x+1)^{3}(x-3)
|
domain of f(x)= x/(sqrt(x^2-5x-14))
|
domain\:f(x)=\frac{x}{\sqrt{x^{2}-5x-14}}
|
domain of f(x)= 1/(sqrt(x^2-16))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}-16}}
|
domain of f(x)=\sqrt[3]{y/(y-4)}
|
domain\:f(x)=\sqrt[3]{\frac{y}{y-4}}
|
critical points of f(x)=x-(250)/x
|
critical\:points\:f(x)=x-\frac{250}{x}
|
domain of f(x)=(sqrt(x+3))/(x^2-36)
|
domain\:f(x)=\frac{\sqrt{x+3}}{x^{2}-36}
|
domain of f(x)=log_{10}(2x-12)
|
domain\:f(x)=\log_{10}(2x-12)
|
domain of f(x)=1.5
|
domain\:f(x)=1.5
|
domain of f(x)=1+1/x-x/(x-1)
|
domain\:f(x)=1+\frac{1}{x}-\frac{x}{x-1}
|
domain of f(x)=e^{1/x}sqrt(x^2+2x)
|
domain\:f(x)=e^{\frac{1}{x}}\sqrt{x^{2}+2x}
|
domain of f(x)=(3x^2+9)/(2x^2-16)
|
domain\:f(x)=\frac{3x^{2}+9}{2x^{2}-16}
|
domain of f(x)=(ln(x+5))/(ln(2))+3
|
domain\:f(x)=\frac{\ln(x+5)}{\ln(2)}+3
|
domain of f(x)=sqrt(x-3)+5
|
domain\:f(x)=\sqrt{x-3}+5
|
domain of (x-16)/(2(x-8)sqrt(x-8))
|
domain\:\frac{x-16}{2(x-8)\sqrt{x-8}}
|
distance (-1,3)(4,9)
|
distance\:(-1,3)(4,9)
|
domain of y=-5x+2
|
domain\:y=-5x+2
|
domain of f(x)=3x^2+4
|
domain\:f(x)=3x^{2}+4
|
domain of f(x)=log_{1/3}(x)
|
domain\:f(x)=\log_{\frac{1}{3}}(x)
|
domain of f(x)=-2x(x-3)(x-7)
|
domain\:f(x)=-2x(x-3)(x-7)
|
domain of xy-2y-x=0
|
domain\:xy-2y-x=0
|
domain of sqrt(10-2x)+3sqrt(x-1)
|
domain\:\sqrt{10-2x}+3\sqrt{x-1}
|
domain of f(x)=(sqrt(x+1))/(x^2)
|
domain\:f(x)=\frac{\sqrt{x+1}}{x^{2}}
|
domain of y=\sqrt[3]{x-2}
|
domain\:y=\sqrt[3]{x-2}
|
domain of g(x)=x-1
|
domain\:g(x)=x-1
|
inverse of f(x)=11-x^2
|
inverse\:f(x)=11-x^{2}
|
domain of g(x)=x+3
|
domain\:g(x)=x+3
|
domain of f(x)= 8/(x^2-1)
|
domain\:f(x)=\frac{8}{x^{2}-1}
|
domain of f(t)=cos(t)
|
domain\:f(t)=\cos(t)
|
domain of f(x)= 1/(sqrt(x+1)-1)
|
domain\:f(x)=\frac{1}{\sqrt{x+1}-1}
|
domain of f(x)=sqrt((x^2-4)/(x^2-1))
|
domain\:f(x)=\sqrt{\frac{x^{2}-4}{x^{2}-1}}
|
domain of f(x)=log_{3}(2x-1)
|
domain\:f(x)=\log_{3}(2x-1)
|
domain of f(x)= 7/(x-1)
|
domain\:f(x)=\frac{7}{x-1}
|
domain of y=(2x^3-5)/(x^2+x-6)
|
domain\:y=\frac{2x^{3}-5}{x^{2}+x-6}
|
domain of 1/(sqrt(14-5x-x^2))
|
domain\:\frac{1}{\sqrt{14-5x-x^{2}}}
|
domain of f(x)=(2x-1)/(5-x)
|
domain\:f(x)=\frac{2x-1}{5-x}
|
domain of (sqrt(3-x))
|
domain\:(\sqrt{3-x})
|
domain of 1/2 e^{-x}-1
|
domain\:\frac{1}{2}e^{-x}-1
|
domain of (x^2+5x+6)/(x^2-9)
|
domain\:\frac{x^{2}+5x+6}{x^{2}-9}
|
domain of f(x)=log_{10}(x^2+2x-3)
|
domain\:f(x)=\log_{10}(x^{2}+2x-3)
|
domain of ln(-3x+1)
|
domain\:\ln(-3x+1)
|
domain of f(x)= 1/(x(x+3))
|
domain\:f(x)=\frac{1}{x(x+3)}
|
domain of f(x)=3x^3-6x^2+15x+21
|
domain\:f(x)=3x^{3}-6x^{2}+15x+21
|
domain of g(x)= x/(x^2+81)
|
domain\:g(x)=\frac{x}{x^{2}+81}
|