perpendicular 6x-y=-3,\at (-9,5)
|
perpendicular\:6x-y=-3,\at\:(-9,5)
|
domain of f(x)= 2/(3^3-4x)
|
domain\:f(x)=\frac{2}{3^{3}-4x}
|
domain of (sqrt(x-1))/(x+5)
|
domain\:\frac{\sqrt{x-1}}{x+5}
|
domain of f(x)=|x-4|+2x-6
|
domain\:f(x)=\left|x-4\right|+2x-6
|
domain of sqrt(-8+1/2)x
|
domain\:\sqrt{-8+\frac{1}{2}}x
|
domain of f(x)=(ln(x-2)+ln(7-x))/(x-5)
|
domain\:f(x)=\frac{\ln(x-2)+\ln(7-x)}{x-5}
|
domain of f(x)=sin(t)+4cos(t)+t
|
domain\:f(x)=\sin(t)+4\cos(t)+t
|
domain of f(x)=(x^4+1)/(x^2)
|
domain\:f(x)=\frac{x^{4}+1}{x^{2}}
|
domain of f(x)=log_{7}(3x-2)
|
domain\:f(x)=\log_{7}(3x-2)
|
domain of y=arctan((x-1)/(x+1))
|
domain\:y=\arctan(\frac{x-1}{x+1})
|
domain of f(x)=(x^2)/(x^2+16)
|
domain\:f(x)=\frac{x^{2}}{x^{2}+16}
|
inverse of f(x)=3\sqrt[3]{x}
|
inverse\:f(x)=3\sqrt[3]{x}
|
domain of f(x)=sqrt(9x-3)
|
domain\:f(x)=\sqrt{9x-3}
|
domain of 5.75cos(pi/3 t)+7.88
|
domain\:5.75\cos(\frac{π}{3}t)+7.88
|
domain of f(x)=sqrt(-x^2+7x)
|
domain\:f(x)=\sqrt{-x^{2}+7x}
|
domain of y+4=x^{2/3}
|
domain\:y+4=x^{\frac{2}{3}}
|
domain of sqrt(1/(x+2))
|
domain\:\sqrt{\frac{1}{x+2}}
|
domain of (x^2-3x+2)/(x^2+7x+12)
|
domain\:\frac{x^{2}-3x+2}{x^{2}+7x+12}
|
domain of f(x)=sqrt(4/5 x+2)
|
domain\:f(x)=\sqrt{\frac{4}{5}x+2}
|
domain of f(x)=log_{10}(|1-x^2|)
|
domain\:f(x)=\log_{10}(\left|1-x^{2}\right|)
|
domain of 9x-5
|
domain\:9x-5
|
domain of d(y)=y+3
|
domain\:d(y)=y+3
|
range of x^3-8
|
range\:x^{3}-8
|
intercepts of 6/((x-2)^3)
|
intercepts\:\frac{6}{(x-2)^{3}}
|
domain of y=sqrt(3x-8)
|
domain\:y=\sqrt{3x-8}
|
domain of y=2^{-x}
|
domain\:y=2^{-x}
|
domain of f(x)=2xsqrt(x+3)
|
domain\:f(x)=2x\sqrt{x+3}
|
domain of f(x)=1+sqrt(x(x-3))
|
domain\:f(x)=1+\sqrt{x(x-3)}
|
domain of f(x)=(x^3+3x^2+1)/(4x(x-1)^2)
|
domain\:f(x)=\frac{x^{3}+3x^{2}+1}{4x(x-1)^{2}}
|
domain of f(x)= 1/((y-2)+(y-8))
|
domain\:f(x)=\frac{1}{(y-2)+(y-8)}
|
domain of f(x)=-3/4 x+2
|
domain\:f(x)=-\frac{3}{4}x+2
|
domain of f(x)=|x|+4
|
domain\:f(x)=\left|x\right|+4
|
domain of (sqrt(x-2))/(sqrt(5-x))
|
domain\:\frac{\sqrt{x-2}}{\sqrt{5-x}}
|
domain of f(x)=((x+|x|))/x
|
domain\:f(x)=\frac{(x+\left|x\right|)}{x}
|
domain of f(x)=-|x-5|+6
|
domain\:f(x)=-|x-5|+6
|
domain of (4x-ln(3x))/x
|
domain\:\frac{4x-\ln(3x)}{x}
|
domain of f(x)=(-2)/(x-5)
|
domain\:f(x)=\frac{-2}{x-5}
|
domain of f(x)=sqrt(3+x)+sqrt(3-x)
|
domain\:f(x)=\sqrt{3+x}+\sqrt{3-x}
|
domain of f(x)=cos(cos(x))
|
domain\:f(x)=\cos(\cos(x))
|
domain of f(x)=-4^x+5
|
domain\:f(x)=-4^{x}+5
|
domain of-5x+10
|
domain\:-5x+10
|
domain of f(x)=((2x^2+5x))/(-x^2+5)
|
domain\:f(x)=\frac{(2x^{2}+5x)}{-x^{2}+5}
|
domain of sqrt(\sqrt{x)-1}-1
|
domain\:\sqrt{\sqrt{x}-1}-1
|
domain of f(x)=x>=-3
|
domain\:f(x)=x\ge\:-3
|
domain of f(x)=sqrt(6x+2)
|
domain\:f(x)=\sqrt{6x+2}
|
range of 4(x+3)^2-2
|
range\:4(x+3)^{2}-2
|
domain of 8/(x-3)
|
domain\:\frac{8}{x-3}
|
domain of 7+4t+5(11-3t)
|
domain\:7+4t+5(11-3t)
|
domain of f(x)= 1/2 cos(2x-pi/3)
|
domain\:f(x)=\frac{1}{2}\cos(2x-\frac{π}{3})
|
domain of f(x)=-6x^2-14x-4
|
domain\:f(x)=-6x^{2}-14x-4
|
domain of 1/(x^2+2x-3)
|
domain\:\frac{1}{x^{2}+2x-3}
|
domain of (x^2+x-2)/(x^2-x-2)
|
domain\:\frac{x^{2}+x-2}{x^{2}-x-2}
|
domain of f(x)=sqrt(t-5)
|
domain\:f(x)=\sqrt{t-5}
|
domain of y=-(x-1)^3(x+3)^2
|
domain\:y=-(x-1)^{3}(x+3)^{2}
|
domain of y=5^{x^2-4x-2}
|
domain\:y=5^{x^{2}-4x-2}
|
inflection points of f(x)=x^4-12x^2
|
inflection\:points\:f(x)=x^{4}-12x^{2}
|
domain of f(x)=sqrt(t-1)
|
domain\:f(x)=\sqrt{t-1}
|
domain of y= 1/(x^2-2x-8)
|
domain\:y=\frac{1}{x^{2}-2x-8}
|
domain of 5/((x+1)^2)
|
domain\:\frac{5}{(x+1)^{2}}
|
domain of f(x)= 1/(xsqrt(1+x))
|
domain\:f(x)=\frac{1}{x\sqrt{1+x}}
|
domain of x^2-10ln(x)
|
domain\:x^{2}-10\ln(x)
|
domain of f(x)=(x^2-2)/(x^2+3)
|
domain\:f(x)=\frac{x^{2}-2}{x^{2}+3}
|
domain of (x^2+2x-3)/(x^2-1)
|
domain\:\frac{x^{2}+2x-3}{x^{2}-1}
|
domain of-8
|
domain\:-8
|
domain of f(x)=(x^2-8x+15)/(x^2-7x+12)
|
domain\:f(x)=\frac{x^{2}-8x+15}{x^{2}-7x+12}
|
midpoint (7,21)(53,33)
|
midpoint\:(7,21)(53,33)
|
domain of f(x)=-2x^2+x-3
|
domain\:f(x)=-2x^{2}+x-3
|
domain of f(x)=(2x-3)/(x-5)
|
domain\:f(x)=\frac{2x-3}{x-5}
|
domain of f(x)= 1/(sqrt(-x^2+7x))
|
domain\:f(x)=\frac{1}{\sqrt{-x^{2}+7x}}
|
domain of f(x)=(sqrt(x+1))/(sqrt(x-1))
|
domain\:f(x)=\frac{\sqrt{x+1}}{\sqrt{x-1}}
|
domain of f(x)= 4/(x+8)
|
domain\:f(x)=\frac{4}{x+8}
|
domain of y=4sqrt(x)
|
domain\:y=4\sqrt{x}
|
domain of f(x)=(x-3)/(x-4)
|
domain\:f(x)=\frac{x-3}{x-4}
|
domain of y=(x^2)/(1+x^2)
|
domain\:y=\frac{x^{2}}{1+x^{2}}
|
domain of f(x)= x/(x^2+7),-6<= x<= 0
|
domain\:f(x)=\frac{x}{x^{2}+7},-6\le\:x\le\:0
|
domain of f(x)=sqrt(x-\sqrt{1-x^2)}
|
domain\:f(x)=\sqrt{x-\sqrt{1-x^{2}}}
|
critical points of 2x-5ln(4x+2)
|
critical\:points\:2x-5\ln(4x+2)
|
domain of f(x)= 6/(x-6)
|
domain\:f(x)=\frac{6}{x-6}
|
domain of y= 6/((sqrt(8-x))-2)
|
domain\:y=\frac{6}{(\sqrt{8-x})-2}
|
domain of+sin(e^t-1)
|
domain\:+\sin(e^{t}-1)
|
domain of U(x)=24x-2328
|
domain\:U(x)=24x-2328
|
domain of f(x)= x/(x^2-7x+12)
|
domain\:f(x)=\frac{x}{x^{2}-7x+12}
|
domain of f(x)=6x^3
|
domain\:f(x)=6x^{3}
|
domain of f(x)=ln(x^2+x-6)+sqrt(x^2+x-2)
|
domain\:f(x)=\ln(x^{2}+x-6)+\sqrt{x^{2}+x-2}
|
domain of f(x)=(sqrt(x+5))/(x-4)
|
domain\:f(x)=\frac{\sqrt{x+5}}{x-4}
|
domain of f(x)=sqrt(-4x+16)
|
domain\:f(x)=\sqrt{-4x+16}
|
critical points of f(x)= 1/(x-1)-1/x
|
critical\:points\:f(x)=\frac{1}{x-1}-\frac{1}{x}
|
domain of f(x)= 1/(sqrt(3x+5))
|
domain\:f(x)=\frac{1}{\sqrt{3x+5}}
|
domain of f(x)=5(x-9)^2-32
|
domain\:f(x)=5(x-9)^{2}-32
|
domain of f(x)=(3x-1)/(5-x)
|
domain\:f(x)=\frac{3x-1}{5-x}
|
domain of g(x)= 1/(x^2+1)
|
domain\:g(x)=\frac{1}{x^{2}+1}
|
domain of x^3-3x+2
|
domain\:x^{3}-3x+2
|
domain of g(x)= 1/(x(x+2))
|
domain\:g(x)=\frac{1}{x(x+2)}
|
domain of f(x)=(3x-3)^2
|
domain\:f(x)=(3x-3)^{2}
|
domain of f(x)=2+sqrt(x^2-4x)
|
domain\:f(x)=2+\sqrt{x^{2}-4x}
|
domain of f(x)=log_{2}((3x-2)/(x-1)+1)
|
domain\:f(x)=\log_{2}(\frac{3x-2}{x-1}+1)
|
domain of f(x)= 1/((x-6)(x+1))
|
domain\:f(x)=\frac{1}{(x-6)(x+1)}
|
domain of y=log_{10}(5+3x)
|
domain\:y=\log_{10}(5+3x)
|
domain of f(x)=(2x)^{1/3}-7
|
domain\:f(x)=(2x)^{\frac{1}{3}}-7
|
domain of f(x)= 5/(2x+1)
|
domain\:f(x)=\frac{5}{2x+1}
|