Upgrade to Pro
Continue to site
Solutions
Graphing
Calculators
New
Geometry
Practice
Notebook
Groups
Cheat Sheets
Sign in
Upgrade
Upgrade
Account Details
Login Options
Account Management
Settings
Subscription
Logout
No new notifications
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Popular Functions & Graphing Problems
domain of g(x)= 1/(x+5)
domain\:g(x)=\frac{1}{x+5}
domain of f(x)=-2(3x)^{1/6}
domain\:f(x)=-2(3x)^{\frac{1}{6}}
domain of f(x)=sqrt(x+11)+5
domain\:f(x)=\sqrt{x+11}+5
domain of f(x)=(32000)/(100-x)
domain\:f(x)=\frac{32000}{100-x}
domain of 5/(2x+1)
domain\:\frac{5}{2x+1}
domain of f(x)= 1/(x^2-36)
domain\:f(x)=\frac{1}{x^{2}-36}
domain of (x^2+24)/6
domain\:\frac{x^{2}+24}{6}
domain of f(x)=(sqrt(2x+4))/(x^2-x-2)
domain\:f(x)=\frac{\sqrt{2x+4}}{x^{2}-x-2}
domain of f(x)=x^2-4x+9
domain\:f(x)=x^{2}-4x+9
domain of (x/(2x^2-5))(sqrt(x))
domain\:(\frac{x}{2x^{2}-5})(\sqrt{x})
inverse of (x+6)/(x-5)
inverse\:\frac{x+6}{x-5}
domain of f(x)= 1/(x^2-8x+16)
domain\:f(x)=\frac{1}{x^{2}-8x+16}
domain of y=sqrt(x^2-x)
domain\:y=\sqrt{x^{2}-x}
domain of f(x)=sqrt(-x^2+2x)
domain\:f(x)=\sqrt{-x^{2}+2x}
domain of f(x)=arccos(sqrt(x-3))
domain\:f(x)=\arccos(\sqrt{x-3})
domain of 3+sqrt(16-(x-3)^2)
domain\:3+\sqrt{16-(x-3)^{2}}
domain of f(x)=(-2*0)/(sqrt(4))+e^0-13
domain\:f(x)=\frac{-2\cdot\:0}{\sqrt{4}}+e^{0}-13
domain of y=5x-2
domain\:y=5x-2
domain of f(x)=-x^2-2x+8
domain\:f(x)=-x^{2}-2x+8
parity f(x)=sqrt(x^8)+sqrt(x^6)
parity\:f(x)=\sqrt{x^{8}}+\sqrt{x^{6}}
domain of f(x)=-sqrt(3y-2)
domain\:f(x)=-\sqrt{3y-2}
domain of (3x+4)/(x^2+7x+12)
domain\:\frac{3x+4}{x^{2}+7x+12}
domain of f(x)=(sqrt(2-x))/(ln(x))
domain\:f(x)=\frac{\sqrt{2-x}}{\ln(x)}
domain of f(x)=(x-6)/(x^2-3x-18)
domain\:f(x)=\frac{x-6}{x^{2}-3x-18}
domain of e^{2x+3}
domain\:e^{2x+3}
domain of f(x)=sqrt(2x^2-11x+12)+1
domain\:f(x)=\sqrt{2x^{2}-11x+12}+1
domain of f(x)=ln(ln(x^2))
domain\:f(x)=\ln(\ln(x^{2}))
domain of (x-5)/(x^2-4x)
domain\:\frac{x-5}{x^{2}-4x}
domain of log_{10}(x^2+2x-3)
domain\:\log_{10}(x^{2}+2x-3)
domain of f(x)=x^3-6
domain\:f(x)=x^{3}-6
line (-2,1),(2,4)
line\:(-2,1),(2,4)
domain of f(x)=sqrt(x-2)+4
domain\:f(x)=\sqrt{x-2}+4
domain of f(x)= 2/5 x-3
domain\:f(x)=\frac{2}{5}x-3
domain of f(x)=-2/5
domain\:f(x)=-\frac{2}{5}
domain of f(x)=3sqrt(6-3x)-5sqrt(2x)+x
domain\:f(x)=3\sqrt{6-3x}-5\sqrt{2x}+x
domain of xy-y-x-2=0
domain\:xy-y-x-2=0
domain of sqrt(\sqrt{x)-1}
domain\:\sqrt{\sqrt{x}-1}
domain of 1/(sqrt(1-x))
domain\:\frac{1}{\sqrt{1-x}}
domain of h(x)= 1/(sin(x)-1/2)
domain\:h(x)=\frac{1}{\sin(x)-\frac{1}{2}}
domain of 3sqrt(x-2)
domain\:3\sqrt{x-2}
domain of f(x)=6-|x-3|
domain\:f(x)=6-\left|x-3\right|
asymptotes of csc(x)-3csc(2x-(pi)/4)
asymptotes\:\csc(x)-3\csc(2x-\frac{\pi}{4})
domain of f(x)=sqrt(2-1)
domain\:f(x)=\sqrt{2-1}
domain of f(x)=log_{10}(2x-1)
domain\:f(x)=\log_{10}(2x-1)
domain of f(x)=(x-13)/(sqrt(x^2-x-6))
domain\:f(x)=\frac{x-13}{\sqrt{x^{2}-x-6}}
domain of f(x)=e^{-6x}
domain\:f(x)=e^{-6x}
domain of sqrt(1/4)x
domain\:\sqrt{\frac{1}{4}}x
domain of (2x)/(x^2-9)
domain\:\frac{2x}{x^{2}-9}
domain of f(x)=1x^3+4x^2+4x+d
domain\:f(x)=1x^{3}+4x^{2}+4x+d
domain of 1/(x^3+1)
domain\:\frac{1}{x^{3}+1}
domain of f(x)=(x+2)/(xsqrt(x-4))
domain\:f(x)=\frac{x+2}{x\sqrt{x-4}}
domain of f(r)=2pir^2+12pir
domain\:f(r)=2πr^{2}+12πr
domain of f(x)=(4300x)/(x^2+40)
domain\:f(x)=\frac{4300x}{x^{2}+40}
domain of f(x)=(ln(2x))/x
domain\:f(x)=\frac{\ln(2x)}{x}
domain of f(x)=log_{4}(x^2-4)
domain\:f(x)=\log_{4}(x^{2}-4)
domain of (sqrt(x-4))/(sqrt(x-6))
domain\:\frac{\sqrt{x-4}}{\sqrt{x-6}}
domain of f(x)=(sqrt(3x-2))/(x^2-9)
domain\:f(x)=\frac{\sqrt{3x-2}}{x^{2}-9}
domain of 8-x
domain\:8-x
domain of 3*x^{2/3}-2x
domain\:3\cdot\:x^{\frac{2}{3}}-2x
domain of (x^2)/(1+x)
domain\:\frac{x^{2}}{1+x}
domain of y= 5/(x+2)
domain\:y=\frac{5}{x+2}
extreme points of f(x)=(x^2+12)/(x-3)
extreme\:points\:f(x)=\frac{x^{2}+12}{x-3}
domain of 0.5(x-6)^2-3
domain\:0.5(x-6)^{2}-3
domain of (e^x)/(sqrt(1-e^{2x))}
domain\:\frac{e^{x}}{\sqrt{1-e^{2x}}}
domain of y=(x^2)/(x^2-4)
domain\:y=\frac{x^{2}}{x^{2}-4}
domain of 1/(sqrt(x-1)-1)
domain\:\frac{1}{\sqrt{x-1}-1}
domain of (x+1)/3
domain\:\frac{x+1}{3}
domain of (2x-18)/(x^2-18x)
domain\:\frac{2x-18}{x^{2}-18x}
domain of f(x)=2pir^2+16pir
domain\:f(x)=2πr^{2}+16πr
domain of-sqrt(16-x^2)
domain\:-\sqrt{16-x^{2}}
domain of 2pir^2+8pir
domain\:2πr^{2}+8πr
domain of g(x)=ln(25x-x^2)
domain\:g(x)=\ln(25x-x^{2})
asymptotes of 2^x-6
asymptotes\:2^{x}-6
domain of f(x,y)= 1/(x^2)
domain\:f(x,y)=\frac{1}{x^{2}}
domain of f(x)=4^x-1
domain\:f(x)=4^{x}-1
domain of f(x)=2^{x+4}
domain\:f(x)=2^{x+4}
domain of f(x)=-(x-3)^5(x+1)^4
domain\:f(x)=-(x-3)^{5}(x+1)^{4}
domain of f(x)=-(x-4)^2+16
domain\:f(x)=-(x-4)^{2}+16
domain of f(x)=log_{10}(3+2x-x^2)
domain\:f(x)=\log_{10}(3+2x-x^{2})
domain of (x^2)/(x-5)
domain\:\frac{x^{2}}{x-5}
intercepts of f(x)=(x^2-49)/(x^2-8x)
intercepts\:f(x)=\frac{x^{2}-49}{x^{2}-8x}
domain of f(x)=50x-x^2
domain\:f(x)=50x-x^{2}
domain of sqrt((3-x)/(|2x-5|))
domain\:\sqrt{\frac{3-x}{\left|2x-5\right|}}
domain of f(x)=(4-s^2)/(2s^2-7s-4)
domain\:f(x)=\frac{4-s^{2}}{2s^{2}-7s-4}
domain of (2x-4)/(x+4)
domain\:\frac{2x-4}{x+4}
domain of (7x)/(x^2-2x-8)
domain\:\frac{7x}{x^{2}-2x-8}
domain of f(x)=log_{e}(x^2-1)
domain\:f(x)=\log_{e}(x^{2}-1)
domain of f(x)= 1/(sqrt(-x^2+6x))
domain\:f(x)=\frac{1}{\sqrt{-x^{2}+6x}}
domain of (3-sqrt(x+1))/(sqrt(x+1)-1)
domain\:\frac{3-\sqrt{x+1}}{\sqrt{x+1}-1}
domain of f(x)=ln(x^2+3x)
domain\:f(x)=\ln(x^{2}+3x)
domain of f(x)=0.3^x
domain\:f(x)=0.3^{x}
inverse of f(x)=3(x-1)^2+1
inverse\:f(x)=3(x-1)^{2}+1
domain of y= 6/(x(x+9))
domain\:y=\frac{6}{x(x+9)}
domain of f(x)=(2x)/((x+4)(x-9))
domain\:f(x)=\frac{2x}{(x+4)(x-9)}
domain of |2x-5|
domain\:\left|2x-5\right|
domain of f(x)=(x-5)/(sqrt(x^2-9))
domain\:f(x)=\frac{x-5}{\sqrt{x^{2}-9}}
domain of 1/(x^2-x-90)
domain\:\frac{1}{x^{2}-x-90}
domain of log_{5}(3x^2-5x+2)
domain\:\log_{5}(3x^{2}-5x+2)
domain of (x^2-3)/(x^2-x-2)+1
domain\:\frac{x^{2}-3}{x^{2}-x-2}+1
domain of f(x)=sin(x)+tan(x)+cot(x)
domain\:f(x)=\sin(x)+\tan(x)+\cot(x)
1
..
223
224
225
226
227
228
229
..
1339
We want your feedback
(optional)
(optional)
Please add a message.
Message received. Thanks for the feedback.
Cancel
Send
Generating PDF...
Feedback