inverse of f(x)=(4x-5)/(2x+1)
|
inverse\:f(x)=\frac{4x-5}{2x+1}
|
inverse of 2x^{1/2}
|
inverse\:2x^{\frac{1}{2}}
|
inverse of y=sqrt(16-x^2)
|
inverse\:y=\sqrt{16-x^{2}}
|
inverse of f(x)= 5/(6x+1)
|
inverse\:f(x)=\frac{5}{6x+1}
|
inverse of f(x)=-60(x-3)^2-50
|
inverse\:f(x)=-60(x-3)^{2}-50
|
inverse of f(x)=cos(x)+1
|
inverse\:f(x)=\cos(x)+1
|
inverse of f(x)=8x-13
|
inverse\:f(x)=8x-13
|
inverse of f(x)=y=(-5)/(1.25)(x-8.5)+7
|
inverse\:f(x)=y=\frac{-5}{1.25}(x-8.5)+7
|
inverse of f(x)=sqrt(7-5x)-2
|
inverse\:f(x)=\sqrt{7-5x}-2
|
inverse of 1/2*(e^x+e^{-x})
|
inverse\:\frac{1}{2}\cdot\:(e^{x}+e^{-x})
|
inverse of (x-9)/(21-4x)
|
inverse\:\frac{x-9}{21-4x}
|
inverse of ln(8x)+5
|
inverse\:\ln(8x)+5
|
inverse of f(x)= 2/(x-2)-1
|
inverse\:f(x)=\frac{2}{x-2}-1
|
inverse of y=sqrt(x)-4
|
inverse\:y=\sqrt{x}-4
|
inverse of y=sqrt(x)+5
|
inverse\:y=\sqrt{x}+5
|
inverse of f(x)=(-2x)/3-6
|
inverse\:f(x)=\frac{-2x}{3}-6
|
inverse of f(x)=-sqrt(4-x^2),0<= x<2
|
inverse\:f(x)=-\sqrt{4-x^{2}},0\le\:x<2
|
inverse of f(x)=3sqrt(x)+7
|
inverse\:f(x)=3\sqrt{x}+7
|
intercepts of 3x^3-4x^2+3x-2
|
intercepts\:3x^{3}-4x^{2}+3x-2
|
inverse of (81x^4)/(16)
|
inverse\:\frac{81x^{4}}{16}
|
inverse of f(x)=sqrt(x^2+16)+2x
|
inverse\:f(x)=\sqrt{x^{2}+16}+2x
|
inverse of y= 8/(4-2x)
|
inverse\:y=\frac{8}{4-2x}
|
inverse of f(x)= 2/5 x+1/3
|
inverse\:f(x)=\frac{2}{5}x+\frac{1}{3}
|
inverse of g(x)=arccos(x)
|
inverse\:g(x)=\arccos(x)
|
inverse of f(x)=4+5x
|
inverse\:f(x)=4+5x
|
inverse of 2x^2-8
|
inverse\:2x^{2}-8
|
inverse of f(x)=11-6x^3
|
inverse\:f(x)=11-6x^{3}
|
inverse of f(x)=-2+4/5 x
|
inverse\:f(x)=-2+\frac{4}{5}x
|
inverse of-2-x^2
|
inverse\:-2-x^{2}
|
asymptotes of f(x)=((x^3+1))/(x^2-1)
|
asymptotes\:f(x)=\frac{(x^{3}+1)}{x^{2}-1}
|
slope intercept of-x+y=-2
|
slope\:intercept\:-x+y=-2
|
inverse of 5x^3
|
inverse\:5x^{3}
|
inverse of f(x)= 3/(5x-2)
|
inverse\:f(x)=\frac{3}{5x-2}
|
inverse of f(x)=\sqrt[3]{-6+1}
|
inverse\:f(x)=\sqrt[3]{-6+1}
|
inverse of f(x)=45-0.45x
|
inverse\:f(x)=45-0.45x
|
inverse of (6x-7)/(2x-2)
|
inverse\:\frac{6x-7}{2x-2}
|
inverse of y=((x^5-2))/3
|
inverse\:y=\frac{(x^{5}-2)}{3}
|
inverse of f(x)=y=5x-5
|
inverse\:f(x)=y=5x-5
|
inverse of f(x)=1-1/(0.15*10)
|
inverse\:f(x)=1-\frac{1}{0.15\cdot\:10}
|
inverse of f(x)=(-3x+1)/(-4x+2)
|
inverse\:f(x)=\frac{-3x+1}{-4x+2}
|
inverse of f(x)=\sqrt[18]{x}
|
inverse\:f(x)=\sqrt[18]{x}
|
domain of f(x)=(-5)/(-sqrt(x+2))
|
domain\:f(x)=\frac{-5}{-\sqrt{x+2}}
|
inverse of f(x)=(x-6)^2,[6,infinity ]
|
inverse\:f(x)=(x-6)^{2},[6,\infty\:]
|
inverse of 1/(x^2-1)
|
inverse\:\frac{1}{x^{2}-1}
|
inverse of f(x)=13-6x^3
|
inverse\:f(x)=13-6x^{3}
|
inverse of f(x)= 1/2 (1/2)^x
|
inverse\:f(x)=\frac{1}{2}(\frac{1}{2})^{x}
|
inverse of 7/(s^4)
|
inverse\:\frac{7}{s^{4}}
|
inverse of f(x)=sqrt(x+8),x>=-8
|
inverse\:f(x)=\sqrt{x+8},x\ge\:-8
|
inverse of f(x)=5(x+6)^3-7
|
inverse\:f(x)=5(x+6)^{3}-7
|
inverse of log_{7}(x^4)
|
inverse\:\log_{7}(x^{4})
|
inverse of f(x)=(1-1/(0.15x+1))
|
inverse\:f(x)=(1-\frac{1}{0.15x+1})
|
inverse of f(x)=(-2)/(x+1)
|
inverse\:f(x)=\frac{-2}{x+1}
|
domain of (4t-8)/(4-t^2)
|
domain\:\frac{4t-8}{4-t^{2}}
|
inverse of sqrt(X+3)
|
inverse\:\sqrt{X+3}
|
inverse of y=(x+2)^2+3
|
inverse\:y=(x+2)^{2}+3
|
inverse of f(x)=((9x+5))/((x-2))
|
inverse\:f(x)=\frac{(9x+5)}{(x-2)}
|
inverse of y=(sqrt(x))/(sqrt(x)-3)
|
inverse\:y=\frac{\sqrt{x}}{\sqrt{x}-3}
|
inverse of f(4)= 8/(x-3)
|
inverse\:f(4)=\frac{8}{x-3}
|
inverse of f(x)=(17)/(x^2+8x+17)
|
inverse\:f(x)=\frac{17}{x^{2}+8x+17}
|
inverse of (4x)/(5-x)
|
inverse\:\frac{4x}{5-x}
|
inverse of f(x)=4pix^2
|
inverse\:f(x)=4πx^{2}
|
inverse of f(x)=4x^2+10
|
inverse\:f(x)=4x^{2}+10
|
inverse of f(x)= x/4+7/4
|
inverse\:f(x)=\frac{x}{4}+\frac{7}{4}
|
domain of f(x)=-(x^2)/2-2x
|
domain\:f(x)=-\frac{x^{2}}{2}-2x
|
inverse of f(x)=((1+x))/(1-x)
|
inverse\:f(x)=\frac{(1+x)}{1-x}
|
inverse of f(x)=45-1.25x
|
inverse\:f(x)=45-1.25x
|
inverse of (x-13)/5
|
inverse\:\frac{x-13}{5}
|
inverse of f(x)=(4+3x)/(x-1)
|
inverse\:f(x)=\frac{4+3x}{x-1}
|
inverse of f(x)=log_{4}((x-1)^2)
|
inverse\:f(x)=\log_{4}((x-1)^{2})
|
inverse of f(x)=f(x)=2(x-3)^2+5
|
inverse\:f(x)=f(x)=2(x-3)^{2}+5
|
inverse of 4y=5(x+2)
|
inverse\:4y=5(x+2)
|
inverse of f(x)=(ln(x))/(1-ln(x))
|
inverse\:f(x)=\frac{\ln(x)}{1-\ln(x)}
|
inverse of f(x)=ln(x-1)-ln(2x+1)
|
inverse\:f(x)=\ln(x-1)-\ln(2x+1)
|
inverse of f(x)=log_{5}(2x+4)
|
inverse\:f(x)=\log_{5}(2x+4)
|
shift cos((theta)/3)
|
shift\:\cos(\frac{\theta}{3})
|
inverse of f(x)=(2x-7)/(5x+1)
|
inverse\:f(x)=\frac{2x-7}{5x+1}
|
inverse of f(x)=3sin(x)+2
|
inverse\:f(x)=3\sin(x)+2
|
inverse of 7+ln(3x+1)
|
inverse\:7+\ln(3x+1)
|
inverse of f(x)=100-x^2
|
inverse\:f(x)=100-x^{2}
|
inverse of f(x)= 1/2 (x-4)^2-1
|
inverse\:f(x)=\frac{1}{2}(x-4)^{2}-1
|
inverse of f(x)=(x-3)^4-1
|
inverse\:f(x)=(x-3)^{4}-1
|
inverse of f(x)=(x-4)/(x+5)
|
inverse\:f(x)=\frac{x-4}{x+5}
|
inverse of f(x)=(-8x+x^2+12)/(12)
|
inverse\:f(x)=\frac{-8x+x^{2}+12}{12}
|
inverse of f(x)=f(x)= 1/2 (x-4)^2+1
|
inverse\:f(x)=f(x)=\frac{1}{2}(x-4)^{2}+1
|
inverse of 4x^2-28x+16y-31=0
|
inverse\:4x^{2}-28x+16y-31=0
|
domain of sqrt(2-x)+4
|
domain\:\sqrt{2-x}+4
|
inverse of sqrt(3+x)
|
inverse\:\sqrt{3+x}
|
inverse of-x^2-1=y
|
inverse\:-x^{2}-1=y
|
inverse of f(x)=7+sqrt(5x-5)
|
inverse\:f(x)=7+\sqrt{5x-5}
|
inverse of f(x)=30n+400
|
inverse\:f(x)=30n+400
|
inverse of f(x)=sqrt(12-2x)+3/2
|
inverse\:f(x)=\sqrt{12-2x}+\frac{3}{2}
|
inverse of-2x^2+x-1
|
inverse\:-2x^{2}+x-1
|
inverse of f(x)=sqrt(3-x)+6
|
inverse\:f(x)=\sqrt{3-x}+6
|
inverse of 6+2^{7x-1}
|
inverse\:6+2^{7x-1}
|
inverse of f(x)=(x-9)^2,x<= 9
|
inverse\:f(x)=(x-9)^{2},x\le\:9
|
inverse of f(x)=1-(1/((0.15x+1)))
|
inverse\:f(x)=1-(\frac{1}{(0.15x+1)})
|
inverse of f(x)= 1/8 x-5
|
inverse\:f(x)=\frac{1}{8}x-5
|
inverse of f(x)=(x+3)2-2
|
inverse\:f(x)=(x+3)2-2
|
inverse of f(x)=((x+4))/((x+7))
|
inverse\:f(x)=\frac{(x+4)}{(x+7)}
|
inverse of f(x)=\sqrt[5]{x-2}-2
|
inverse\:f(x)=\sqrt[5]{x-2}-2
|