Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of f(x)=(x+3)/(x-2)
domain\:f(x)=\frac{x+3}{x-2}
inverse of 1/5 x+2
inverse\:\frac{1}{5}x+2
range of 2/(1-\frac{1){x-2}}
range\:\frac{2}{1-\frac{1}{x-2}}
extreme 1/(1+cos(x))
extreme\:\frac{1}{1+\cos(x)}
asymptotes of f(x)=(x^8)/(x^2+6)
asymptotes\:f(x)=\frac{x^{8}}{x^{2}+6}
domain of ln(x^2)
domain\:\ln(x^{2})
midpoint (-5.1,-2),(1.4,1.7)
midpoint\:(-5.1,-2),(1.4,1.7)
asymptotes of f(x)=xsqrt(7-x)
asymptotes\:f(x)=x\sqrt{7-x}
inverse of x(x-1)
inverse\:x(x-1)
domain of f(x)=ln(t+3)
domain\:f(x)=\ln(t+3)
asymptotes of f(x)=(4/3)^x
asymptotes\:f(x)=(\frac{4}{3})^{x}
inverse of f(x)= 2/3 x+5
inverse\:f(x)=\frac{2}{3}x+5
range of f(x)=x^2-7
range\:f(x)=x^{2}-7
perpendicular y= 1/4 x+2
perpendicular\:y=\frac{1}{4}x+2
intercepts of y=-4
intercepts\:y=-4
domain of sqrt(2-(x^2-x))
domain\:\sqrt{2-(x^{2}-x)}
intercepts of y=x^2+x-2
intercepts\:y=x^{2}+x-2
inflection 4x^3-12x
inflection\:4x^{3}-12x
critical f(x)= 1/(z-7)-1/z
critical\:f(x)=\frac{1}{z-7}-\frac{1}{z}
range of 1+x^2
range\:1+x^{2}
distance (-4,3),(3,-4)
distance\:(-4,3),(3,-4)
intercepts of y=sec(x)
intercepts\:y=\sec(x)
range of f(x)= 1/(x-1)+1/(x-2)
range\:f(x)=\frac{1}{x-1}+\frac{1}{x-2}
domain of f(x)=x-12
domain\:f(x)=x-12
intercepts of f(x)= 1/2 x-4
intercepts\:f(x)=\frac{1}{2}x-4
inflection f(x)=x(x-4)^3
inflection\:f(x)=x(x-4)^{3}
inflection (x^2)/(x-1)
inflection\:\frac{x^{2}}{x-1}
domain of f(x)= 1/(2sqrt(x))
domain\:f(x)=\frac{1}{2\sqrt{x}}
asymptotes of (4x+1)/(16x^2+1)
asymptotes\:\frac{4x+1}{16x^{2}+1}
critical x^{10/11}-x^{21/11}
critical\:x^{\frac{10}{11}}-x^{\frac{21}{11}}
extreme f(x)=(3x^2)/(x-3)
extreme\:f(x)=\frac{3x^{2}}{x-3}
angle\:\begin{pmatrix}0&10\end{pmatrix},\begin{pmatrix}0&2\end{pmatrix}
inverse of f(x)= x/((8x+1))
inverse\:f(x)=\frac{x}{(8x+1)}
inverse of f(x)=-1-x^5
inverse\:f(x)=-1-x^{5}
inverse of e^{2x+1}
inverse\:e^{2x+1}
extreme-4x-14
extreme\:-4x-14
symmetry x^2+3x-18
symmetry\:x^{2}+3x-18
inverse of y=-1/3 x+5
inverse\:y=-\frac{1}{3}x+5
midpoint (0,2),(6,-2)
midpoint\:(0,2),(6,-2)
asymptotes of f(x)=9tan(pix)
asymptotes\:f(x)=9\tan(πx)
parity f(x)=sqrt(x-1)
parity\:f(x)=\sqrt{x-1}
inverse of f(x)=(x-5)^2+3
inverse\:f(x)=(x-5)^{2}+3
domain of e^{x+6}
domain\:e^{x+6}
inverse of g(x)=(-x-5)/3
inverse\:g(x)=\frac{-x-5}{3}
shift 4sin(6x-pi)
shift\:4\sin(6x-π)
domain of f(x)=(-4-5x)/(3x-1)
domain\:f(x)=\frac{-4-5x}{3x-1}
domain of f(x)=sqrt(3x^2+5)
domain\:f(x)=\sqrt{3x^{2}+5}
inverse of f(x)=(1-4x)/(2x+7)
inverse\:f(x)=\frac{1-4x}{2x+7}
slope of 9
slope\:9
range of-sqrt(1/x)-1
range\:-\sqrt{\frac{1}{x}}-1
monotone (x-3)e^{9x-3}
monotone\:(x-3)e^{9x-3}
critical f(x)=3xsqrt(4x^2+3)
critical\:f(x)=3x\sqrt{4x^{2}+3}
domain of 3-sqrt(x)
domain\:3-\sqrt{x}
slope of y=-59x-32
slope\:y=-59x-32
domain of x/(x^2+6x+8)
domain\:\frac{x}{x^{2}+6x+8}
asymptotes of f(x)=x^2+x-6
asymptotes\:f(x)=x^{2}+x-6
inflection f(x)=(x^3)/3-x^2-3x
inflection\:f(x)=\frac{x^{3}}{3}-x^{2}-3x
domain of f(x)=3sin(pix)
domain\:f(x)=3\sin(πx)
extreme sqrt(2-7x)+3
extreme\:\sqrt{2-7x}+3
extreme f(x)=x^2-10x
extreme\:f(x)=x^{2}-10x
domain of (x+1)/(x^2-1)
domain\:\frac{x+1}{x^{2}-1}
slope ofintercept 2x+4y=16
slopeintercept\:2x+4y=16
inverse of f(x)=1-x^4
inverse\:f(x)=1-x^{4}
intercepts of f(x)=3x-2y=6
intercepts\:f(x)=3x-2y=6
inverse of f(x)=x-10
inverse\:f(x)=x-10
domain of (x^2+3x-4)/(x+4)
domain\:\frac{x^{2}+3x-4}{x+4}
inverse of f(x)=(4x+3)/(9+4x)
inverse\:f(x)=\frac{4x+3}{9+4x}
asymptotes of (x-1)/(1+x^2)
asymptotes\:\frac{x-1}{1+x^{2}}
asymptotes of f(x)=(-12)/(x^2+8x+12)
asymptotes\:f(x)=\frac{-12}{x^{2}+8x+12}
asymptotes of f(x)= 1/((x-5)^2)
asymptotes\:f(x)=\frac{1}{(x-5)^{2}}
slope of 4x+10y=-20
slope\:4x+10y=-20
inverse of 6-7x
inverse\:6-7x
inverse of 2x^2+2x+2
inverse\:2x^{2}+2x+2
slope of-2x+y=-4
slope\:-2x+y=-4
line m=2,(-1,-6)
line\:m=2,(-1,-6)
inverse of f(x)=15x-7
inverse\:f(x)=15x-7
midpoint (7,2),(-3,-6)
midpoint\:(7,2),(-3,-6)
intercepts of f(x)=(0,-3)
intercepts\:f(x)=(0,-3)
monotone 4x-6x^{2/3}
monotone\:4x-6x^{\frac{2}{3}}
domain of f(x)=(9x+81)/x
domain\:f(x)=\frac{9x+81}{x}
asymptotes of f(x)=x^2-16
asymptotes\:f(x)=x^{2}-16
extreme f(x)=ln(3-2x^2)
extreme\:f(x)=\ln(3-2x^{2})
inverse of f(x)=x^2+3x-4
inverse\:f(x)=x^{2}+3x-4
parallel x+2y=6,(1,-3)
parallel\:x+2y=6,(1,-3)
critical f(x)=(x^2-9)/(x^2+6)
critical\:f(x)=\frac{x^{2}-9}{x^{2}+6}
intercepts of 3*2^{x-4}-5
intercepts\:3\cdot\:2^{x-4}-5
domain of f(x)=((1-x))/(2x-1)
domain\:f(x)=\frac{(1-x)}{2x-1}
symmetry x^2-6x-1
symmetry\:x^{2}-6x-1
range of log_{5}(x+2)
range\:\log_{5}(x+2)
intercepts of (x^2+x-6)/(x-3)
intercepts\:\frac{x^{2}+x-6}{x-3}
domain of f(x)=3x^2-18x+2
domain\:f(x)=3x^{2}-18x+2
inverse of (x+2)^2-4
inverse\:(x+2)^{2}-4
symmetry y=6x^2+24x+5
symmetry\:y=6x^{2}+24x+5
inverse of f(x)=0.625
inverse\:f(x)=0.625
range of (3x)/((x+2)^2)
range\:\frac{3x}{(x+2)^{2}}
domain of f(x)=sqrt(x)+sqrt(8-x)
domain\:f(x)=\sqrt{x}+\sqrt{8-x}
domain of f(x)=sqrt(\sqrt{x-7)-7}
domain\:f(x)=\sqrt{\sqrt{x-7}-7}
critical f(x)=3.1+6.6x-2.3x^2
critical\:f(x)=3.1+6.6x-2.3x^{2}
range of (4x+7)/(3x-4)
range\:\frac{4x+7}{3x-4}
intercepts of f(x)=3x^2+2x-6
intercepts\:f(x)=3x^{2}+2x-6
1
..
114
115
116
117
118
..
1324