Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)((2x)/(x^2+y))
\frac{\partial\:}{\partial\:x}(\frac{2x}{x^{2}+y})
integral of (x^2+1)^{3/2}
\int\:(x^{2}+1)^{\frac{3}{2}}dx
integral of-15x^4(-3x^5-1)^5
\int\:-15x^{4}(-3x^{5}-1)^{5}dx
derivative of sqrt(x)ln(4x)
\frac{d}{dx}(\sqrt{x}\ln(4x))
area 4-x,0,-2,6
area\:4-x,0,-2,6
area y=1,x=y^{5/2},[0,1]
area\:y=1,x=y^{\frac{5}{2}},[0,1]
integral of 6e^{-6x}
\int\:6e^{-6x}dx
limit as x approaches 1 of ln(x)-ln(x-1)
\lim\:_{x\to\:1}(\ln(x)-\ln(x-1))
limit as x approaches 0 of x/(x^2+y^2)
\lim\:_{x\to\:0}(\frac{x}{x^{2}+y^{2}})
integral of 1/(x^2+8)
\int\:\frac{1}{x^{2}+8}dx
integral of 1/(xsqrt(9x^2+1))
\int\:\frac{1}{x\sqrt{9x^{2}+1}}dx
integral of (x^8)
\int\:(x^{8})dx
limit as x approaches 3 of 3sqrt(9x-3)
\lim\:_{x\to\:3}(3\sqrt{9x-3})
derivative of 4x^2-5x-50
derivative\:4x^{2}-5x-50
taylor 1/(sqrt(1+x)),0
taylor\:\frac{1}{\sqrt{1+x}},0
limit as x approaches-3 of x^2+x-6
\lim\:_{x\to\:-3}(x^{2}+x-6)
tangent of f(x)=x^3-9x,(3,0)
tangent\:f(x)=x^{3}-9x,(3,0)
t(dy)/(dt)=t^3+4t^3y
t\frac{dy}{dt}=t^{3}+4t^{3}y
integral of (x^2+3)5x
\int\:(x^{2}+3)5xdx
derivative of f(x)=(3x^3+2)(x^4-2x)
derivative\:f(x)=(3x^{3}+2)(x^{4}-2x)
(dy)/(dx)x+y=(xy)^{3/2}
\frac{dy}{dx}x+y=(xy)^{\frac{3}{2}}
integral of 1/(1+8x)
\int\:\frac{1}{1+8x}dx
derivative of 6^{sin(pix})
\frac{d}{dx}(6^{\sin(πx)})
(\partial)/(\partial x)(ln(7ye^{xy}))
\frac{\partial\:}{\partial\:x}(\ln(7ye^{xy}))
tangent of f(x)=(4x)/(x+2),(6,3)
tangent\:f(x)=\frac{4x}{x+2},(6,3)
integral of (-3/x+3e^x)
\int\:(-\frac{3}{x}+3e^{x})dx
slope of (-10)(-13.3)
slope\:(-10)(-13.3)
inverse oflaplace 1/(s^2+220)
inverselaplace\:\frac{1}{s^{2}+220}
limit as x approaches+4 of (x^2-1)/(x-4)
\lim\:_{x\to\:+4}(\frac{x^{2}-1}{x-4})
derivative of f(x)=sqrt(x^2+5x)
derivative\:f(x)=\sqrt{x^{2}+5x}
derivative of e^{sqrt(ln(x^2+1+x)})
\frac{d}{dx}(e^{\sqrt{\ln(x^{2}+1)+x}})
integral of (x^4+2x+4)/(x^5+x^4)
\int\:\frac{x^{4}+2x+4}{x^{5}+x^{4}}dx
integral from-1 to 6 of (9y)/(y^2-5y-14)
\int\:_{-1}^{6}\frac{9y}{y^{2}-5y-14}dy
x^{''}=kx
x^{\prime\:\prime\:}=kx
integral of (sin^5(x))/(cos^3(x))
\int\:\frac{\sin^{5}(x)}{\cos^{3}(x)}dx
integral from 1 to 2 of (4/x-(16)/(x^2))
\int\:_{1}^{2}(\frac{4}{x}-\frac{16}{x^{2}})dx
y^'-2ty=t
y^{\prime\:}-2ty=t
integral of (5cos^2(x))/(sin(x))
\int\:\frac{5\cos^{2}(x)}{\sin(x)}dx
tangent of y=(8x)/((x^2+1)),\at
tangent\:y=\frac{8x}{(x^{2}+1)},\at\:
y^'=y(1-y/(6200))
y^{\prime\:}=y(1-\frac{y}{6200})
integral of (cos(pi/(x^{35)}))/(x^{36)}
\int\:\frac{\cos(\frac{π}{x^{35}})}{x^{36}}dx
integral of sec(6x)tan(6x)
\int\:\sec(6x)\tan(6x)dx
limit as x approaches 1000 of x^{8/3}
\lim\:_{x\to\:1000}(x^{\frac{8}{3}})
(\partial)/(\partial x)(1/(sqrt(1+x^2)))
\frac{\partial\:}{\partial\:x}(\frac{1}{\sqrt{1+x^{2}}})
derivative of ((x-3/(x+2))^{12})
\frac{d}{dx}((\frac{x-3}{x+2})^{12})
derivative of 1/16 e^{2x^2}
\frac{d}{dx}(\frac{1}{16}e^{2x^{2}})
d/(dy)(sqrt(y-y^2))
\frac{d}{dy}(\sqrt{y-y^{2}})
y^'=(3y-4x)/(2x-3x)
y^{\prime\:}=\frac{3y-4x}{2x-3x}
derivative of x+ln(x^2+1)
\frac{d}{dx}(x+\ln(x^{2}+1))
area y=2x+2,y=x^2+2,x=-1,x=3
area\:y=2x+2,y=x^{2}+2,x=-1,x=3
limit as x approaches-pi of (sin(x))/x
\lim\:_{x\to\:-π}(\frac{\sin(x)}{x})
derivative of-x^2+2x+3
\frac{d}{dx}(-x^{2}+2x+3)
integral of 2t+1
\int\:2t+1dt
derivative of y=ln(sqrt(1-x^2))
derivative\:y=\ln(\sqrt{1-x^{2}})
integral from 0 to y of 0.5
\int\:_{0}^{y}0.5dx
derivative of sqrt(4-x^2)
derivative\:\sqrt{4-x^{2}}
derivative of f(x)=cos(sqrt(sin(tan(pix))))
derivative\:f(x)=\cos(\sqrt{\sin(\tan(πx))})
(dy}{dx}= 1/x y-\frac{x^2)/3 y^4
\frac{dy}{dx}=\frac{1}{x}y-\frac{x^{2}}{3}y^{4}
tangent of y=(2x)/(1+x^2),(4, 8/17)
tangent\:y=\frac{2x}{1+x^{2}},(4,\frac{8}{17})
integral of 1/(1-sin(x)+cos(x))
\int\:\frac{1}{1-\sin(x)+\cos(x)}dx
limit as x approaches 4 of ln|x-4|
\lim\:_{x\to\:4}(\ln\left|x-4\right|)
derivative of (8t)/(t+7)
derivative\:\frac{8t}{t+7}
(dy)/(dt)=2y+1
\frac{dy}{dt}=2y+1
integral of (4x-5)/((x-2)(x+3))
\int\:\frac{4x-5}{(x-2)(x+3)}dx
derivative of 1/(sin(x-sin(x)))
\frac{d}{dx}(\frac{1}{\sin(x-\sin(x))})
derivative of y=(8x^2+4x+2)/(sqrt(x))
derivative\:y=\frac{8x^{2}+4x+2}{\sqrt{x}}
(\partial)/(\partial x)((4x+y)^3(x-y)^2)
\frac{\partial\:}{\partial\:x}((4x+y)^{3}(x-y)^{2})
(dy)/(dx)=14x^{-8}
\frac{dy}{dx}=14x^{-8}
derivative of x^3-3x^2-9x+15
\frac{d}{dx}(x^{3}-3x^{2}-9x+15)
x^3+3y-xy^'=0
x^{3}+3y-xy^{\prime\:}=0
derivative of g(t)=-3/(2t^{3/2)}
derivative\:g(t)=-\frac{3}{2t^{\frac{3}{2}}}
limit as x approaches pi/2 of tan^2(x)
\lim\:_{x\to\:\frac{π}{2}}(\tan^{2}(x))
y^{''}+2y^'+y=sin(x)+6cos(2x)
y^{\prime\:\prime\:}+2y^{\prime\:}+y=\sin(x)+6\cos(2x)
derivative of x/((1+x^2^{1/2)})
\frac{d}{dx}(\frac{x}{(1+x^{2})^{\frac{1}{2}}})
limit as x approaches+4+of 3/(x-4)
\lim\:_{x\to\:+4+}(\frac{3}{x-4})
(\partial)/(\partial x)(-5e^x*cos(yz))
\frac{\partial\:}{\partial\:x}(-5e^{x}\cdot\:\cos(yz))
limit as x approaches-2 of x^3+6x^2-16
\lim\:_{x\to\:-2}(x^{3}+6x^{2}-16)
integral of ((cos^2(x)))/(sin(x))
\int\:\frac{(\cos^{2}(x))}{\sin(x)}dx
integral of 1/((2x+3)^2)
\int\:\frac{1}{(2x+3)^{2}}dx
laplacetransform cos^2(4t)
laplacetransform\:\cos^{2}(4t)
tangent of y=x^2e^x-2xe^x+2e^x,(1,e)
tangent\:y=x^{2}e^{x}-2xe^{x}+2e^{x},(1,e)
y^{''}-y^'-6y=e^{2x}
y^{\prime\:\prime\:}-y^{\prime\:}-6y=e^{2x}
derivative of f(x)=8x^7
derivative\:f(x)=8x^{7}
implicit (dy)/(dx),7x+4y=2
implicit\:\frac{dy}{dx},7x+4y=2
(\partial)/(\partial x)((2y)/(y+cos(x)))
\frac{\partial\:}{\partial\:x}(\frac{2y}{y+\cos(x)})
integral of (x+2)/((x+1)^2)
\int\:\frac{x+2}{(x+1)^{2}}dx
integral from 0 to 10 of 9800pi(10-y)
\int\:_{0}^{10}9800π(10-y)dy
derivative of f(x)=(-x^2)/(200)
derivative\:f(x)=\frac{-x^{2}}{200}
derivative of (x^2+1(x+5+1/x))
\frac{d}{dx}((x^{2}+1)(x+5+\frac{1}{x}))
area y=4x^2,y=24
area\:y=4x^{2},y=24
tangent of f(x)=2x^3-2x,\at x=1
tangent\:f(x)=2x^{3}-2x,\at\:x=1
limit as x approaches 0 of (ln(e^x-x))/x
\lim\:_{x\to\:0}(\frac{\ln(e^{x}-x)}{x})
(\partial)/(\partial x)((8x)/(x^2+y^2))
\frac{\partial\:}{\partial\:x}(\frac{8x}{x^{2}+y^{2}})
(\partial)/(\partial b)((a^3b^4)/(c^2d^4))
\frac{\partial\:}{\partial\:b}(\frac{a^{3}b^{4}}{c^{2}d^{4}})
(\partial)/(\partial x)(-e^{-x-y})
\frac{\partial\:}{\partial\:x}(-e^{-x-y})
integral from 1/2 to 1 of (x^{-3}-24)
\int\:_{\frac{1}{2}}^{1}(x^{-3}-24)dx
y^{''}+2y^'+y=2
y^{\prime\:\prime\:}+2y^{\prime\:}+y=2
limit as x approaches 0 of x*e^x
\lim\:_{x\to\:0}(x\cdot\:e^{x})
derivative of (10log_{4}(x)/x)
\frac{d}{dx}(\frac{10\log_{4}(x)}{x})
limit as x approaches infinity of (6^{x+1})/(7^{x-1)}
\lim\:_{x\to\:\infty\:}(\frac{6^{x+1}}{7^{x-1}})
1
..
634
635
636
637
638
..
2459