extreme x+(64)/x
|
extreme\:x+\frac{64}{x}
|
extreme f(x)=x^3-6x^2-15x+10
|
extreme\:f(x)=x^{3}-6x^{2}-15x+10
|
extreme f(x)=x^4-32x^2+6
|
extreme\:f(x)=x^{4}-32x^{2}+6
|
extreme f(x)= x/((x-1)^2)
|
extreme\:f(x)=\frac{x}{(x-1)^{2}}
|
f(x,y)=2^2x^4+2^2y^4-4xy+16
|
f(x,y)=2^{2}x^{4}+2^{2}y^{4}-4xy+16
|
f(x)=Ix-3I-2
|
f(x)=Ix-3I-2
|
extreme f(x)=-x^4-4x^3+7
|
extreme\:f(x)=-x^{4}-4x^{3}+7
|
midpoint (2,2)(-4,5)
|
midpoint\:(2,2)(-4,5)
|
extreme f(x)=x^3+3x
|
extreme\:f(x)=x^{3}+3x
|
extreme f(x)=3x^2-6x+1
|
extreme\:f(x)=3x^{2}-6x+1
|
f(x,y)=(sqrt(y-x^2))/(ln(y))
|
f(x,y)=\frac{\sqrt{y-x^{2}}}{\ln(y)}
|
extreme f(x,y)=x^3+y^3-6xy+27
|
extreme\:f(x,y)=x^{3}+y^{3}-6xy+27
|
f(x,y)=x^2y+4xy-y^2+3
|
f(x,y)=x^{2}y+4xy-y^{2}+3
|
extreme f(x)=3-x
|
extreme\:f(x)=3-x
|
extreme f(x)=x^4-2x^3+1
|
extreme\:f(x)=x^{4}-2x^{3}+1
|
extreme (2x)/(x^2-9)
|
extreme\:\frac{2x}{x^{2}-9}
|
f(x,y)=3x+5y-2x^2-3y^2
|
f(x,y)=3x+5y-2x^{2}-3y^{2}
|
extreme f(x,y)=x^2-2x+y^2+2y+1
|
extreme\:f(x,y)=x^{2}-2x+y^{2}+2y+1
|
domain f(x)=(12-x-x^2)/(x-3)
|
domain\:f(x)=(12-x-x^{2})/(x-3)
|
extreme f(x)=2x+1/x
|
extreme\:f(x)=2x+\frac{1}{x}
|
extreme f(x)=e^{x^2-3x-1},-3<= x<= 3
|
extreme\:f(x)=e^{x^{2}-3x-1},-3\le\:x\le\:3
|
f(x,y)=sqrt(4-x^2)+sqrt(9-y^2)
|
f(x,y)=\sqrt{4-x^{2}}+\sqrt{9-y^{2}}
|
f(x,y)=(5x+7y+25)e^{-(x^2+xy+y^2)}
|
f(x,y)=(5x+7y+25)e^{-(x^{2}+xy+y^{2})}
|
extreme x^3-3x^2+2
|
extreme\:x^{3}-3x^{2}+2
|
extreme f(x)=x^3-2x^2-4x+2
|
extreme\:f(x)=x^{3}-2x^{2}-4x+2
|
extreme f(x,y)=2xy+2x-x^2-2y^2
|
extreme\:f(x,y)=2xy+2x-x^{2}-2y^{2}
|
extreme f(x)=x^3+4x^2+5x-2
|
extreme\:f(x)=x^{3}+4x^{2}+5x-2
|
extreme 3x^2y+y^3-3x^2-3y^2+2
|
extreme\:3x^{2}y+y^{3}-3x^{2}-3y^{2}+2
|
f(x,y)=4x^2+4y^2-4x-8y
|
f(x,y)=4x^{2}+4y^{2}-4x-8y
|
inflection points f(x)=-2x^3+6x^2+166x-5
|
inflection\:points\:f(x)=-2x^{3}+6x^{2}+166x-5
|
f(x,y)=10xy-5x^2-7y^2+40x
|
f(x,y)=10xy-5x^{2}-7y^{2}+40x
|
extreme f(x)=ln(1+8x^3)
|
extreme\:f(x)=\ln(1+8x^{3})
|
f(x,y)=x^4+y^4-4xy
|
f(x,y)=x^{4}+y^{4}-4xy
|
extreme f(x)=2xln(x)
|
extreme\:f(x)=2x\ln(x)
|
extreme f(x)=2+2x^2-x^4
|
extreme\:f(x)=2+2x^{2}-x^{4}
|
extreme f(x)=x^2e^{-2x}
|
extreme\:f(x)=x^{2}e^{-2x}
|
extreme f(x,y)=e^{-x-y}
|
extreme\:f(x,y)=e^{-x-y}
|
extreme f(x,y)=2xy-x^2-2y^2+3x+4
|
extreme\:f(x,y)=2xy-x^{2}-2y^{2}+3x+4
|
extreme f(x)=sqrt(16-x^2)
|
extreme\:f(x)=\sqrt{16-x^{2}}
|
extreme f(x)=-x^3+3x^2+45x-42
|
extreme\:f(x)=-x^{3}+3x^{2}+45x-42
|
range 7x^2+14x
|
range\:7x^{2}+14x
|
extreme f(x)=(x^2+12)(1-x^2)
|
extreme\:f(x)=(x^{2}+12)(1-x^{2})
|
extreme (x^2)/(x-2)
|
extreme\:\frac{x^{2}}{x-2}
|
extreme f(x)=(-3)/(x^2-9)
|
extreme\:f(x)=\frac{-3}{x^{2}-9}
|
f(x,y)=xy+9/x+3/y
|
f(x,y)=xy+\frac{9}{x}+\frac{3}{y}
|
extreme 6x-x^2
|
extreme\:6x-x^{2}
|
extreme f(x)=(2x^3)/3+3x^2-20x,(-7,5)
|
extreme\:f(x)=\frac{2x^{3}}{3}+3x^{2}-20x,(-7,5)
|
extreme f(x,y)=x^2+xy+y^2-12x-24y-241
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-12x-24y-241
|
y=x(t-1/4)
|
y=x(t-\frac{1}{4})
|
extreme f(x,y)=xy-x^2y-xy^2
|
extreme\:f(x,y)=xy-x^{2}y-xy^{2}
|
extreme f(x)=x^3+9x^2+27x+3
|
extreme\:f(x)=x^{3}+9x^{2}+27x+3
|
inverse 2x^2
|
inverse\:2x^{2}
|
f(x,y)=x^2-12xy+2y^4
|
f(x,y)=x^{2}-12xy+2y^{4}
|
f(x,y)=-x^3+y^2+3x-4y-1
|
f(x,y)=-x^{3}+y^{2}+3x-4y-1
|
extreme f(x,y)=x^3+y^3-9xy
|
extreme\:f(x,y)=x^{3}+y^{3}-9xy
|
f(x,y)=(xy+1)/(x^2-y)
|
f(x,y)=\frac{xy+1}{x^{2}-y}
|
extreme f(x)=2x^4+y^2-x^2-2y
|
extreme\:f(x)=2x^{4}+y^{2}-x^{2}-2y
|
extreme x^3-6x^2+5
|
extreme\:x^{3}-6x^{2}+5
|
extreme f(x)=3-x,-1<= x<= 2
|
extreme\:f(x)=3-x,-1\le\:x\le\:2
|
extreme f(x)=x+2cos(x)
|
extreme\:f(x)=x+2\cos(x)
|
extreme (x^2)/(x+1)
|
extreme\:\frac{x^{2}}{x+1}
|
extreme (x^3-1)^{2/3}
|
extreme\:(x^{3}-1)^{\frac{2}{3}}
|
symmetry 2x+2=y
|
symmetry\:2x+2=y
|
f(x)=9y-18-5x
|
f(x)=9y-18-5x
|
extreme f(x)= x/(x^2-x+25)
|
extreme\:f(x)=\frac{x}{x^{2}-x+25}
|
f(x)=(y^2)/(y+x^2)
|
f(x)=\frac{y^{2}}{y+x^{2}}
|
extreme f(x)=-3x^2+5xy-2y^2+x+y
|
extreme\:f(x)=-3x^{2}+5xy-2y^{2}+x+y
|
extreme f(x)=2x^6+4x^3-6x
|
extreme\:f(x)=2x^{6}+4x^{3}-6x
|
f(x,y)=50x+60y
|
f(x,y)=50x+60y
|
f(t)=10u(t)
|
f(t)=10u(t)
|
extreme x^3-2x
|
extreme\:x^{3}-2x
|
extreme f(x)=2x^3+3x^2-12x-3
|
extreme\:f(x)=2x^{3}+3x^{2}-12x-3
|
f(x)=3xy+x^3-y^2
|
f(x)=3xy+x^{3}-y^{2}
|
asymptotes f(x)=(x^2-2x-8)/(x^2-9)
|
asymptotes\:f(x)=\frac{x^{2}-2x-8}{x^{2}-9}
|
extreme f(x)=-2x^4-24x^3+12
|
extreme\:f(x)=-2x^{4}-24x^{3}+12
|
extreme f(x)=5x^2+4x
|
extreme\:f(x)=5x^{2}+4x
|
f(x,y)=-1/4 x^4+2/3 x^3+4xy-y^2
|
f(x,y)=-\frac{1}{4}x^{4}+\frac{2}{3}x^{3}+4xy-y^{2}
|
f(x,y)=xy(10-2x-3y)
|
f(x,y)=xy(10-2x-3y)
|
P(b,s)=b+2s
|
P(b,s)=b+2s
|
extreme f(x)=2xe^{-x}
|
extreme\:f(x)=2xe^{-x}
|
extreme x^{2/3}(5/2-x)
|
extreme\:x^{\frac{2}{3}}(\frac{5}{2}-x)
|
extreme f(x)=2x^5+5x^4
|
extreme\:f(x)=2x^{5}+5x^{4}
|
f(x,y)=3x^2-xy+2y^3
|
f(x,y)=3x^{2}-xy+2y^{3}
|
extreme f(x)=89e^{x^4}+11
|
extreme\:f(x)=89e^{x^{4}}+11
|
domain f(x)= x/(x-2)
|
domain\:f(x)=\frac{x}{x-2}
|
extreme f(x)=sqrt(x)-1/(sqrt(x))
|
extreme\:f(x)=\sqrt{x}-\frac{1}{\sqrt{x}}
|
extreme x(x-2)^2
|
extreme\:x(x-2)^{2}
|
extreme f(x)=xsqrt(15-x)
|
extreme\:f(x)=x\sqrt{15-x}
|
Z(x,y)=e^{xy}(x-2y)
|
Z(x,y)=e^{xy}(x-2y)
|
extreme f(x)=(x^2-8x+37)/(x-6)
|
extreme\:f(x)=\frac{x^{2}-8x+37}{x-6}
|
extreme f(x)=x^4+8x^3+18x^2+2
|
extreme\:f(x)=x^{4}+8x^{3}+18x^{2}+2
|
minimum 89e^{x^4}+11
|
minimum\:89e^{x^{4}}+11
|
f(xy)=x^2+y^2+2/(xy)
|
f(xy)=x^{2}+y^{2}+\frac{2}{xy}
|
extreme f(x)=x^3-12xy+8y^3
|
extreme\:f(x)=x^{3}-12xy+8y^{3}
|
extreme f(x)=xsqrt(9-x^2),-1<= x<= 3
|
extreme\:f(x)=x\sqrt{9-x^{2}},-1\le\:x\le\:3
|
shift 4sin(3\theta-1/3 pi)+1
|
shift\:4\sin(3\theta-\frac{1}{3}\pi)+1
|
extreme points f(x)=x^2-6x+7
|
extreme\:points\:f(x)=x^{2}-6x+7
|
extreme x^2-2x-8
|
extreme\:x^{2}-2x-8
|
f(x)=2x-y
|
f(x)=2x-y
|
f(x)=2x+y
|
f(x)=2x+y
|