asymptotes of f(x)=(x^3-4x)/(4x^2-12x)
|
asymptotes\:f(x)=\frac{x^{3}-4x}{4x^{2}-12x}
|
inverse of f(x)=\sqrt[3]{x+8}
|
inverse\:f(x)=\sqrt[3]{x+8}
|
domain of e^{(x-2)/4}
|
domain\:e^{\frac{x-2}{4}}
|
inverse of f(x)=-11x^3
|
inverse\:f(x)=-11x^{3}
|
range of f(x)=2x-4
|
range\:f(x)=2x-4
|
inverse of f(x)=(1+x)/(2-x)
|
inverse\:f(x)=\frac{1+x}{2-x}
|
asymptotes of f(x)=(e^{-2x})/(x-7)
|
asymptotes\:f(x)=\frac{e^{-2x}}{x-7}
|
midpoint (-5,4)(3,2)
|
midpoint\:(-5,4)(3,2)
|
domain of f(x)=(2x-6)/(x+3)
|
domain\:f(x)=\frac{2x-6}{x+3}
|
domain of p(x)=2x-6
|
domain\:p(x)=2x-6
|
inverse of (6x)/(7x-1)
|
inverse\:\frac{6x}{7x-1}
|
midpoint (-4,3)(3,1)
|
midpoint\:(-4,3)(3,1)
|
slope intercept of 2x+5y=10
|
slope\:intercept\:2x+5y=10
|
domain of 1+cot(x-(pi)/4)
|
domain\:1+\cot(x-\frac{\pi}{4})
|
symmetry y=3x^2+6x+2
|
symmetry\:y=3x^{2}+6x+2
|
inverse of y=-5x-7
|
inverse\:y=-5x-7
|
domain of 9-3^x
|
domain\:9-3^{x}
|
slope of-14x+4y=-10
|
slope\:-14x+4y=-10
|
asymptotes of f(x)=(3+2x)/(x-1)
|
asymptotes\:f(x)=\frac{3+2x}{x-1}
|
parity f(x)=sqrt(x^4-x^2)+4
|
parity\:f(x)=\sqrt{x^{4}-x^{2}}+4
|
intercepts of f(x)=2x^2-12x-14
|
intercepts\:f(x)=2x^{2}-12x-14
|
domain of (x+6)/(x^2+3x-18)
|
domain\:\frac{x+6}{x^{2}+3x-18}
|
range of f(x)=3x^2+5x-2
|
range\:f(x)=3x^{2}+5x-2
|
slope of y=-1.75x+19
|
slope\:y=-1.75x+19
|
domain of f(x)=6x
|
domain\:f(x)=6x
|
extreme points of f(x)=-0.3t^2+2.4t+98.6
|
extreme\:points\:f(x)=-0.3t^{2}+2.4t+98.6
|
inverse of f(x)=-(x+3)^2+6
|
inverse\:f(x)=-(x+3)^{2}+6
|
shift 3sin(6x-pi)
|
shift\:3\sin(6x-\pi)
|
asymptotes of (-3x+1)/(x-5)
|
asymptotes\:\frac{-3x+1}{x-5}
|
inverse of f(x)=-5x+9
|
inverse\:f(x)=-5x+9
|
extreme points of f(x)=x^2-4
|
extreme\:points\:f(x)=x^{2}-4
|
inverse of f(x)=sqrt(3+5x)
|
inverse\:f(x)=\sqrt{3+5x}
|
inflection points of f(x)=(x-5)/(x+5)
|
inflection\:points\:f(x)=\frac{x-5}{x+5}
|
distance (-5,-4)(4,1)
|
distance\:(-5,-4)(4,1)
|
range of 5/x
|
range\:\frac{5}{x}
|
inverse of f(x)=((6x+1))/3
|
inverse\:f(x)=\frac{(6x+1)}{3}
|
range of f(x)=log_{2}(x+2)
|
range\:f(x)=\log_{2}(x+2)
|
inflection points of 2x^3+3x^2-36x
|
inflection\:points\:2x^{3}+3x^{2}-36x
|
shift 6sin(2x-pi)
|
shift\:6\sin(2x-\pi)
|
critical points of f(x)=(10x)/(x^2+25)
|
critical\:points\:f(x)=\frac{10x}{x^{2}+25}
|
asymptotes of x/((x+2)(x-3))
|
asymptotes\:\frac{x}{(x+2)(x-3)}
|
extreme points of-x^{2/3}(x-2)
|
extreme\:points\:-x^{\frac{2}{3}}(x-2)
|
parity f(x)=-3x^3+6x
|
parity\:f(x)=-3x^{3}+6x
|
parity f(x)=-9x
|
parity\:f(x)=-9x
|
asymptotes of f(x)=(x+2)/(x^2-2x-3)
|
asymptotes\:f(x)=\frac{x+2}{x^{2}-2x-3}
|
parity 1/(x+6)
|
parity\:\frac{1}{x+6}
|
midpoint (6,20)(7,8)
|
midpoint\:(6,20)(7,8)
|
extreme points of f(x)=x^4-4x^3+7
|
extreme\:points\:f(x)=x^{4}-4x^{3}+7
|
asymptotes of f(x)=(4x+1)/(x-2)
|
asymptotes\:f(x)=\frac{4x+1}{x-2}
|
range of f(x)=x^2+25
|
range\:f(x)=x^{2}+25
|
midpoint (6,7)(-2,3)
|
midpoint\:(6,7)(-2,3)
|
domain of f(x)=(x^2)/(x^2+7)
|
domain\:f(x)=\frac{x^{2}}{x^{2}+7}
|
slope intercept of y+2= 5/2 (x+1)
|
slope\:intercept\:y+2=\frac{5}{2}(x+1)
|
line (-4,1)(2,4)
|
line\:(-4,1)(2,4)
|
inverse of f(x)=10x+1
|
inverse\:f(x)=10x+1
|
inverse of 2x^2-3
|
inverse\:2x^{2}-3
|
asymptotes of (x-7)/(x+7)
|
asymptotes\:\frac{x-7}{x+7}
|
slope of y=4-2x
|
slope\:y=4-2x
|
critical points of f(x)=(x+4)^2(x-2)
|
critical\:points\:f(x)=(x+4)^{2}(x-2)
|
domain of x^2-x-6
|
domain\:x^{2}-x-6
|
domain of f(x)=x^3-x^2-6x
|
domain\:f(x)=x^{3}-x^{2}-6x
|
inverse of f(x)=(7x)/(9x-1)
|
inverse\:f(x)=\frac{7x}{9x-1}
|
intercepts of f(x)=y=(x+5)(x+3)
|
intercepts\:f(x)=y=(x+5)(x+3)
|
inverse of 8/(7+x)
|
inverse\:\frac{8}{7+x}
|
domain of f(x)=(3x-1)/(sqrt(-1+9x^2))
|
domain\:f(x)=\frac{3x-1}{\sqrt{-1+9x^{2}}}
|
critical points of (6x+3)/(sqrt(x+4))
|
critical\:points\:\frac{6x+3}{\sqrt{x+4}}
|
distance (4,10)\land (8,7)
|
distance\:(4,10)\land\:(8,7)
|
domain of x/(x^2+3x+2)
|
domain\:\frac{x}{x^{2}+3x+2}
|
asymptotes of sqrt(x)
|
asymptotes\:\sqrt{x}
|
critical points of f(x)=6sqrt(x)-6x
|
critical\:points\:f(x)=6\sqrt{x}-6x
|
asymptotes of f(x)=(10/9)^x
|
asymptotes\:f(x)=(\frac{10}{9})^{x}
|
symmetry y= 1/2 (x-3)^2+5
|
symmetry\:y=\frac{1}{2}(x-3)^{2}+5
|
intercepts of f(x)=-x^2+3x+4
|
intercepts\:f(x)=-x^{2}+3x+4
|
critical points of 12sqrt(p)
|
critical\:points\:12\sqrt{p}
|
domain of f(x)=\sqrt[3]{x^3-1}
|
domain\:f(x)=\sqrt[3]{x^{3}-1}
|
slope of y=-x+1
|
slope\:y=-x+1
|
line (2,0)(5,3)
|
line\:(2,0)(5,3)
|
extreme points of f(x)=(x+10)/(x^2-100)
|
extreme\:points\:f(x)=\frac{x+10}{x^{2}-100}
|
midpoint (-2,4)(2,-3)
|
midpoint\:(-2,4)(2,-3)
|
inverse of f(x)= 2/(x-1)
|
inverse\:f(x)=\frac{2}{x-1}
|
domain of f(x)=(4x)/(2x+9)
|
domain\:f(x)=\frac{4x}{2x+9}
|
domain of f(x)=x^2-6
|
domain\:f(x)=x^{2}-6
|
domain of f(x)=-x^4-6x^3+42x^2+12x-80
|
domain\:f(x)=-x^{4}-6x^{3}+42x^{2}+12x-80
|
asymptotes of x/(sqrt(x^2-4))
|
asymptotes\:\frac{x}{\sqrt{x^{2}-4}}
|
slope of x-5y=30
|
slope\:x-5y=30
|
domain of f(x)=x-2
|
domain\:f(x)=x-2
|
intercepts of f(x)=(x^2+3x-54)/(x^2-9)
|
intercepts\:f(x)=\frac{x^{2}+3x-54}{x^{2}-9}
|
inflection points of 4x^3-48x-5
|
inflection\:points\:4x^{3}-48x-5
|
inverse of f(x)= 3/(x-2)+1
|
inverse\:f(x)=\frac{3}{x-2}+1
|
extreme points of x^3+12x+7
|
extreme\:points\:x^{3}+12x+7
|
domain of f(x)=2sqrt(x-2)
|
domain\:f(x)=2\sqrt{x-2}
|
inverse of f(x)=(x-2)/(3x-4)
|
inverse\:f(x)=\frac{x-2}{3x-4}
|
domain of f(x)=x^2+x
|
domain\:f(x)=x^{2}+x
|
range of f(x)=((x^2-x-6))/(x^2-4)
|
range\:f(x)=\frac{(x^{2}-x-6)}{x^{2}-4}
|
critical points of f(x)= 4/(1+x^2)
|
critical\:points\:f(x)=\frac{4}{1+x^{2}}
|
inverse of (-3x+4)/(-6x-1)
|
inverse\:\frac{-3x+4}{-6x-1}
|
inverse of y=x^2+3
|
inverse\:y=x^{2}+3
|
inverse of f(x)=sqrt(x)-6
|
inverse\:f(x)=\sqrt{x}-6
|
domain of 8/(8/x)
|
domain\:\frac{8}{\frac{8}{x}}
|
inverse of f(x)=\sqrt[3]{x-2}-1
|
inverse\:f(x)=\sqrt[3]{x-2}-1
|