line (2,4),(5,-4)
|
line\:(2,4),(5,-4)
|
critical points of (ln(x))/(x^2)
|
critical\:points\:\frac{\ln(x)}{x^{2}}
|
periodicity of f(x)=cos(2x+pi)
|
periodicity\:f(x)=\cos(2x+\pi)
|
range of 9-x^2
|
range\:9-x^{2}
|
range of 3/(x-1)
|
range\:\frac{3}{x-1}
|
domain of f(x)=(x-1)/(x+3)
|
domain\:f(x)=\frac{x-1}{x+3}
|
midpoint (1,-9)(-5,0)
|
midpoint\:(1,-9)(-5,0)
|
extreme points of f(x)=6x^2-24x-30
|
extreme\:points\:f(x)=6x^{2}-24x-30
|
critical points of f(x)=(2x)/(x^2+1)
|
critical\:points\:f(x)=\frac{2x}{x^{2}+1}
|
slope of 3x+y=0
|
slope\:3x+y=0
|
critical points of f(x)=x^2+2/x
|
critical\:points\:f(x)=x^{2}+\frac{2}{x}
|
range of f(x)=x^4
|
range\:f(x)=x^{4}
|
monotone intervals f(x)=-sqrt(x)
|
monotone\:intervals\:f(x)=-\sqrt{x}
|
inverse of f(x)=-1/5 x+15
|
inverse\:f(x)=-\frac{1}{5}x+15
|
domain of f(x)= 1/(x+8)+3/(x-10)
|
domain\:f(x)=\frac{1}{x+8}+\frac{3}{x-10}
|
domain of h(t)=-16t^2+96t
|
domain\:h(t)=-16t^{2}+96t
|
domain of f(x)=y=-x^2+36
|
domain\:f(x)=y=-x^{2}+36
|
symmetry y=x^2+10x+25
|
symmetry\:y=x^{2}+10x+25
|
midpoint (2 1/2 ,-1/4)(3 1/4 ,-1)
|
midpoint\:(2\frac{1}{2},-\frac{1}{4})(3\frac{1}{4},-1)
|
inverse of f(x)=2^{-(x+13)}+1
|
inverse\:f(x)=2^{-(x+13)}+1
|
extreme points of x/(x^2+2)
|
extreme\:points\:\frac{x}{x^{2}+2}
|
intercepts of (2x-6)/(x+4)
|
intercepts\:\frac{2x-6}{x+4}
|
line m=3,\at (-5,6)
|
line\:m=3,\at\:(-5,6)
|
slope of x-y=4
|
slope\:x-y=4
|
line (-0.2,0.3),(2.3,1.1)
|
line\:(-0.2,0.3),(2.3,1.1)
|
slope of x-2y=5
|
slope\:x-2y=5
|
symmetry f(x)=x^2
|
symmetry\:f(x)=x^{2}
|
critical points of sin^2(theta)
|
critical\:points\:\sin^{2}(\theta)
|
extreme points of f(x)=(-2)/(x^2)
|
extreme\:points\:f(x)=\frac{-2}{x^{2}}
|
slope intercept of 8x+10y=70
|
slope\:intercept\:8x+10y=70
|
range of x/(6x-5)
|
range\:\frac{x}{6x-5}
|
y=x^2-6x+8
|
y=x^{2}-6x+8
|
domain of (x^2+3x-4)(x+4)
|
domain\:(x^{2}+3x-4)(x+4)
|
inverse of f(x)=(2x-3)/(3-x)
|
inverse\:f(x)=\frac{2x-3}{3-x}
|
range of f(x)=sqrt(x+7)-9
|
range\:f(x)=\sqrt{x+7}-9
|
midpoint (2,3)(10,3)
|
midpoint\:(2,3)(10,3)
|
domain of (-4)/(-(\frac{-8){-2x-6})+4}
|
domain\:\frac{-4}{-(\frac{-8}{-2x-6})+4}
|
inverse of f(x)=2+sqrt(x-5)
|
inverse\:f(x)=2+\sqrt{x-5}
|
inverse of f(x)=0.5x^2
|
inverse\:f(x)=0.5x^{2}
|
slope of 3x-9y=8
|
slope\:3x-9y=8
|
asymptotes of (x^3-3x^2+6x-8)/x
|
asymptotes\:\frac{x^{3}-3x^{2}+6x-8}{x}
|
range of 2
|
range\:2
|
inverse of (2x)/(x+7)
|
inverse\:\frac{2x}{x+7}
|
inverse of f(x)=-3x+2
|
inverse\:f(x)=-3x+2
|
slope intercept of 2y-x=-9
|
slope\:intercept\:2y-x=-9
|
asymptotes of (2x^2)^{1/(4x)}
|
asymptotes\:(2x^{2})^{\frac{1}{4x}}
|
domain of f(x)=cos^{-1}(x)
|
domain\:f(x)=\cos^{-1}(x)
|
intercepts of f(x)=(x+8)/(x-11)
|
intercepts\:f(x)=\frac{x+8}{x-11}
|
domain of f(x)=(2x^3-250)/(x^2-2x-15)
|
domain\:f(x)=\frac{2x^{3}-250}{x^{2}-2x-15}
|
range of f(x)=x^2+2x-3
|
range\:f(x)=x^{2}+2x-3
|
inverse of f(x)=16x^2+1
|
inverse\:f(x)=16x^{2}+1
|
critical points of f(x)= x/(x^2-1)
|
critical\:points\:f(x)=\frac{x}{x^{2}-1}
|
symmetry-2x^2-2x-2
|
symmetry\:-2x^{2}-2x-2
|
asymptotes of f(x)= 2/(x+3)
|
asymptotes\:f(x)=\frac{2}{x+3}
|
intercepts of f(x)=2x^2-7x-3
|
intercepts\:f(x)=2x^{2}-7x-3
|
inverse of f(x)=(x+20)/(x-5)
|
inverse\:f(x)=\frac{x+20}{x-5}
|
midpoint (-4,-2)(6,2)
|
midpoint\:(-4,-2)(6,2)
|
range of f(x)=x^2-10x+16
|
range\:f(x)=x^{2}-10x+16
|
range of 2ln(x)
|
range\:2\ln(x)
|
distance (5,3)(4,6)
|
distance\:(5,3)(4,6)
|
domain of (5^{1/x})/((x+1)^2)
|
domain\:\frac{5^{\frac{1}{x}}}{(x+1)^{2}}
|
domain of f(x)=-x+13
|
domain\:f(x)=-x+13
|
inverse of (2x+7)/(5x+4)
|
inverse\:\frac{2x+7}{5x+4}
|
range of-sqrt(x-2)-3
|
range\:-\sqrt{x-2}-3
|
domain of f(x)=(7x)/(2+x)
|
domain\:f(x)=\frac{7x}{2+x}
|
symmetry f(x)=3x^2-x^3
|
symmetry\:f(x)=3x^{2}-x^{3}
|
midpoint (1,8)(9,2)
|
midpoint\:(1,8)(9,2)
|
symmetry 3x^2+7x+5LAALDE
|
symmetry\:3x^{2}+7x+5LAALDE
|
domain of f(x)=(3-x)/(x+3)
|
domain\:f(x)=\frac{3-x}{x+3}
|
domain of sqrt(2x-8)
|
domain\:\sqrt{2x-8}
|
domain of F(s)= 5/(25+s^2)
|
domain\:F(s)=\frac{5}{25+s^{2}}
|
range of x^2-12x+35
|
range\:x^{2}-12x+35
|
slope of = 11/3 x-5
|
slope\:=\frac{11}{3}x-5
|
domain of f(t)=5-16t
|
domain\:f(t)=5-16t
|
extreme points of f(x)=2x^3+11x
|
extreme\:points\:f(x)=2x^{3}+11x
|
line (4615.98,10^{16})(31382.6,10^{17})
|
line\:(4615.98,10^{16})(31382.6,10^{17})
|
domain of x^2(81-x)
|
domain\:x^{2}(81-x)
|
amplitude of cos(x)-3
|
amplitude\:\cos(x)-3
|
inverse of f(x)=x^2+3
|
inverse\:f(x)=x^{2}+3
|
inflection points of f(x)=x^4-4x^3
|
inflection\:points\:f(x)=x^{4}-4x^{3}
|
extreme points of f(x)=(x-2)(x-3)^2
|
extreme\:points\:f(x)=(x-2)(x-3)^{2}
|
inverse of f(x)=(x+2)/3
|
inverse\:f(x)=\frac{x+2}{3}
|
domain of (2x-5)/(x^2-4)
|
domain\:\frac{2x-5}{x^{2}-4}
|
intercepts of f(x)=-x^2+2x-1
|
intercepts\:f(x)=-x^{2}+2x-1
|
line (2,)(5,)
|
line\:(2,)(5,)
|
slope intercept of y-1= 2/3 (x+9)
|
slope\:intercept\:y-1=\frac{2}{3}(x+9)
|
range of f(x)=cot(x)
|
range\:f(x)=\cot(x)
|
domain of \sqrt[3]{x+1}+3
|
domain\:\sqrt[3]{x+1}+3
|
monotone intervals x^2-3
|
monotone\:intervals\:x^{2}-3
|
asymptotes of f(x)=(x-2)/(3x^2-36x+60)
|
asymptotes\:f(x)=\frac{x-2}{3x^{2}-36x+60}
|
domain of f(x)=sqrt((4-x^2)/(x+1))
|
domain\:f(x)=\sqrt{\frac{4-x^{2}}{x+1}}
|
inverse of f(x)=tan^{-1}(5x)
|
inverse\:f(x)=\tan^{-1}(5x)
|
extreme points of f(x)=3x^4+4x^3
|
extreme\:points\:f(x)=3x^{4}+4x^{3}
|
inverse of f(x)=y=-2(x-12.5)+5
|
inverse\:f(x)=y=-2(x-12.5)+5
|
domain of x^2-10
|
domain\:x^{2}-10
|
domain of f(x)=3
|
domain\:f(x)=3
|
asymptotes of f(x)=(7/((x-2)))-3
|
asymptotes\:f(x)=(\frac{7}{(x-2)})-3
|
asymptotes of f(x)=((x^2+2x-3))/(x-1)
|
asymptotes\:f(x)=\frac{(x^{2}+2x-3)}{x-1}
|
domain of f(x)=((2x^2)/(2x+4))
|
domain\:f(x)=(\frac{2x^{2}}{2x+4})
|
slope of y=x-5
|
slope\:y=x-5
|