inflection points of (x-5)/(x+5)
|
inflection\:points\:\frac{x-5}{x+5}
|
range of f(x)=6e^{x-4}
|
range\:f(x)=6e^{x-4}
|
parallel 2x+12y=48
|
parallel\:2x+12y=48
|
midpoint (8,-7)(3,-1)
|
midpoint\:(8,-7)(3,-1)
|
domain of-4x^2+6x-1
|
domain\:-4x^{2}+6x-1
|
slope intercept of 4x+4y=4
|
slope\:intercept\:4x+4y=4
|
range of sqrt(x)-1
|
range\:\sqrt{x}-1
|
domain of f(x)= 1/(3x-12)
|
domain\:f(x)=\frac{1}{3x-12}
|
parity f(x)=(2x)/(1-sin^2(x))
|
parity\:f(x)=\frac{2x}{1-\sin^{2}(x)}
|
midpoint (-6,11)(6,-3)
|
midpoint\:(-6,11)(6,-3)
|
range of f(x)=2(x-3)^2-2
|
range\:f(x)=2(x-3)^{2}-2
|
inverse of (x-2)^3
|
inverse\:(x-2)^{3}
|
inverse of f(x)=10^{1.9}
|
inverse\:f(x)=10^{1.9}
|
inflection points of 1/(x-3)
|
inflection\:points\:\frac{1}{x-3}
|
asymptotes of (-4x-6)/(3x-2)
|
asymptotes\:\frac{-4x-6}{3x-2}
|
inflection points of f(x)=x^3
|
inflection\:points\:f(x)=x^{3}
|
extreme points of f(x)=x^3-9x^2+15x+1
|
extreme\:points\:f(x)=x^{3}-9x^{2}+15x+1
|
distance (6,2)(4,4)
|
distance\:(6,2)(4,4)
|
inverse of f(x)=100-4y
|
inverse\:f(x)=100-4y
|
domain of f(x)=(x-6)^{1/2}
|
domain\:f(x)=(x-6)^{\frac{1}{2}}
|
inverse of f(x)=(5x+9)/(4x)
|
inverse\:f(x)=\frac{5x+9}{4x}
|
domain of y=sqrt(x+7)
|
domain\:y=\sqrt{x+7}
|
inverse of sqrt(2x+5)
|
inverse\:\sqrt{2x+5}
|
domain of f(x)=|x-2|
|
domain\:f(x)=|x-2|
|
range of (x^5-3)/2
|
range\:\frac{x^{5}-3}{2}
|
inverse of f(x)=(2x)/(3x-2)
|
inverse\:f(x)=\frac{2x}{3x-2}
|
range of (8x-8)/(x+2)
|
range\:\frac{8x-8}{x+2}
|
domain of f(x)=(\sqrt[3]{x-6})/(x^3-6)
|
domain\:f(x)=\frac{\sqrt[3]{x-6}}{x^{3}-6}
|
asymptotes of f(x)= 1/(x+3)-4
|
asymptotes\:f(x)=\frac{1}{x+3}-4
|
parity h(x)=(-5x^3)/(9x^2-4)
|
parity\:h(x)=\frac{-5x^{3}}{9x^{2}-4}
|
asymptotes of f(x)=(x+4)/(x-6)
|
asymptotes\:f(x)=\frac{x+4}{x-6}
|
perpendicular 9=3y-6x,\at (4,-8)
|
perpendicular\:9=3y-6x,\at\:(4,-8)
|
parity f(x)=2x^3-4x+2
|
parity\:f(x)=2x^{3}-4x+2
|
range of 1/(x^2-16)
|
range\:\frac{1}{x^{2}-16}
|
inverse of sec^2(x)
|
inverse\:\sec^{2}(x)
|
inverse of (x-2)/(sqrt(x+1))
|
inverse\:\frac{x-2}{\sqrt{x+1}}
|
inverse of f(x)=6^x-7
|
inverse\:f(x)=6^{x}-7
|
domain of f(x)=2^{5-8x}
|
domain\:f(x)=2^{5-8x}
|
shift sin(x)+8
|
shift\:\sin(x)+8
|
slope of 6x-2x=3
|
slope\:6x-2x=3
|
asymptotes of (x^2-6x+12)/(x-4)
|
asymptotes\:\frac{x^{2}-6x+12}{x-4}
|
inverse of y=3x-3
|
inverse\:y=3x-3
|
inverse of f(x)= 1/4 x^3-6
|
inverse\:f(x)=\frac{1}{4}x^{3}-6
|
domain of f(x)=(x-2)/(sqrt(x+3))
|
domain\:f(x)=\frac{x-2}{\sqrt{x+3}}
|
domain of f(x)=11x-9
|
domain\:f(x)=11x-9
|
domain of f(x)=(x^2+3)/(sqrt(5-x))
|
domain\:f(x)=\frac{x^{2}+3}{\sqrt{5-x}}
|
domain of e^x-2
|
domain\:e^{x}-2
|
f(x)=x^4-4x^2
|
f(x)=x^{4}-4x^{2}
|
inflection points of f(x)=2x^3-3x^2-8x+1
|
inflection\:points\:f(x)=2x^{3}-3x^{2}-8x+1
|
range of-(x+3)^2+4
|
range\:-(x+3)^{2}+4
|
domain of (sqrt(36-x^2))/(sqrt(x+1))
|
domain\:\frac{\sqrt{36-x^{2}}}{\sqrt{x+1}}
|
critical points of f(x)=\sqrt[5]{x^2}-3
|
critical\:points\:f(x)=\sqrt[5]{x^{2}}-3
|
inverse of 0
|
inverse\:0
|
domain of f(x)=sqrt(4+3x)
|
domain\:f(x)=\sqrt{4+3x}
|
inverse of g(x)=(-x+2)/7
|
inverse\:g(x)=\frac{-x+2}{7}
|
inverse of f(x)=13x^3-1
|
inverse\:f(x)=13x^{3}-1
|
inverse of f(x)=(x+2)^{1/3}+2
|
inverse\:f(x)=(x+2)^{\frac{1}{3}}+2
|
inverse of f(x)= 1/(4x)
|
inverse\:f(x)=\frac{1}{4x}
|
range of |x|-5
|
range\:|x|-5
|
slope of 5x-3y=-15
|
slope\:5x-3y=-15
|
asymptotes of (-4x^2+2x-1)\div (x^2+3)
|
asymptotes\:(-4x^{2}+2x-1)\div\:(x^{2}+3)
|
range of-x^2-1
|
range\:-x^{2}-1
|
intercepts of f(x)=((-3x^2-12x))/(5x^2)
|
intercepts\:f(x)=\frac{(-3x^{2}-12x)}{5x^{2}}
|
inverse of 6log_{5}(2x-6)
|
inverse\:6\log_{5}(2x-6)
|
domain of f(x)=(3x)/(x^2-9)
|
domain\:f(x)=\frac{3x}{x^{2}-9}
|
inverse of f(x)=(x-1)/(x-3)
|
inverse\:f(x)=\frac{x-1}{x-3}
|
domain of f(x)=sqrt(3-(x-3)^2)-2
|
domain\:f(x)=\sqrt{3-(x-3)^{2}}-2
|
domain of f(x)=-\sqrt[4]{x}
|
domain\:f(x)=-\sqrt[4]{x}
|
inverse of f(x)= 4/(x-2)
|
inverse\:f(x)=\frac{4}{x-2}
|
range of 1/(sqrt(x^2-9x+14))
|
range\:\frac{1}{\sqrt{x^{2}-9x+14}}
|
asymptotes of f(1)=(x^2+4x+4)/(x^2+2x-3)
|
asymptotes\:f(1)=\frac{x^{2}+4x+4}{x^{2}+2x-3}
|
domain of (-1)/(2sqrt(9-x))
|
domain\:\frac{-1}{2\sqrt{9-x}}
|
asymptotes of 8xe^{7x}
|
asymptotes\:8xe^{7x}
|
symmetry y=(x-5)^2-9
|
symmetry\:y=(x-5)^{2}-9
|
range of f(x)=-2(x-3)^2+2
|
range\:f(x)=-2(x-3)^{2}+2
|
range of y=(x^3)/((x-1)^2)
|
range\:y=\frac{x^{3}}{(x-1)^{2}}
|
parallel x=-9x,\at (6,-1)
|
parallel\:x=-9x,\at\:(6,-1)
|
midpoint (-3/2 ,-3)(2, 7/2)
|
midpoint\:(-\frac{3}{2},-3)(2,\frac{7}{2})
|
distance (0,1)(2,0)
|
distance\:(0,1)(2,0)
|
slope of 2/3
|
slope\:\frac{2}{3}
|
extreme points of f(x)=1-x^2
|
extreme\:points\:f(x)=1-x^{2}
|
domain of f(x)=(30x^2)/((4-5x^3)^3)
|
domain\:f(x)=\frac{30x^{2}}{(4-5x^{3})^{3}}
|
domain of f(x)=(sqrt(x+2))/(x-2)
|
domain\:f(x)=\frac{\sqrt{x+2}}{x-2}
|
inflection points of f(x)=-2x^3+12x^2+1
|
inflection\:points\:f(x)=-2x^{3}+12x^{2}+1
|
critical points of f(x)=10(t-4)/(t+2)^4
|
critical\:points\:f(x)=10(t-4)/(t+2)^{4}
|
range of 10-sqrt(x+100)
|
range\:10-\sqrt{x+100}
|
inflection points of 5x^3-15x
|
inflection\:points\:5x^{3}-15x
|
critical points of 2x^2+4x-3
|
critical\:points\:2x^{2}+4x-3
|
domain of 2(x+1)^2-3
|
domain\:2(x+1)^{2}-3
|
line (5,)(,4)
|
line\:(5,)(,4)
|
domain of (9x+6)/(x-1)
|
domain\:\frac{9x+6}{x-1}
|
inverse of f(x)=sin((1-9x)/x)
|
inverse\:f(x)=\sin(\frac{1-9x}{x})
|
domain of f(x)=sqrt(5x^2-7x-6)
|
domain\:f(x)=\sqrt{5x^{2}-7x-6}
|
intercepts of f(x)=-6x+5y=9
|
intercepts\:f(x)=-6x+5y=9
|
range of R(x)=3+cos(2x)
|
range\:R(x)=3+\cos(2x)
|
inverse of (23)
|
inverse\:(23)
|
inverse of f(x)=x^3+2
|
inverse\:f(x)=x^{3}+2
|
asymptotes of f(x)=(-3x-9)/(5x+15)
|
asymptotes\:f(x)=\frac{-3x-9}{5x+15}
|
range of f(x)=2x^2-6x+11
|
range\:f(x)=2x^{2}-6x+11
|
domain of f(x)=ln(x-3)
|
domain\:f(x)=\ln(x-3)
|