intercepts of y=2x^2+x-1
|
intercepts\:y=2x^{2}+x-1
|
symmetry 2(x-2)^2+4
|
symmetry\:2(x-2)^{2}+4
|
range of f(x)=-2x^2+4
|
range\:f(x)=-2x^{2}+4
|
parallel 2x-5y-6=0
|
parallel\:2x-5y-6=0
|
inflection points of f(x)=-x^4+4x+8
|
inflection\:points\:f(x)=-x^{4}+4x+8
|
inverse of f(x)=(-3x-13x)/(x+8)
|
inverse\:f(x)=\frac{-3x-13x}{x+8}
|
domain of ln(4x^4)
|
domain\:\ln(4x^{4})
|
intercepts of (x^2+5x+4)/(x^2+15x+56)
|
intercepts\:\frac{x^{2}+5x+4}{x^{2}+15x+56}
|
vertex f(x)=y=x^2+4x
|
vertex\:f(x)=y=x^{2}+4x
|
intercepts of cot(x)
|
intercepts\:\cot(x)
|
intercepts of f(x)=y=x+9
|
intercepts\:f(x)=y=x+9
|
extreme points of (x^2)/(x^2-1)
|
extreme\:points\:\frac{x^{2}}{x^{2}-1}
|
inverse of f(x)=((x+2))/((3x-1))
|
inverse\:f(x)=\frac{(x+2)}{(3x-1)}
|
slope intercept of 3x-y=-1
|
slope\:intercept\:3x-y=-1
|
inverse of f(x)=sqrt(4-x)+3
|
inverse\:f(x)=\sqrt{4-x}+3
|
range of f(t)= 2/(t^2-16)
|
range\:f(t)=\frac{2}{t^{2}-16}
|
midpoint (0,8)(6,16)
|
midpoint\:(0,8)(6,16)
|
range of 1+(8+x)^{1/2}
|
range\:1+(8+x)^{\frac{1}{2}}
|
intercepts of f(x)=6x-4
|
intercepts\:f(x)=6x-4
|
midpoint (3,-2)(-7,-2)
|
midpoint\:(3,-2)(-7,-2)
|
intercepts of f(x)=x^2+y^2+6x-8y+9=0
|
intercepts\:f(x)=x^{2}+y^{2}+6x-8y+9=0
|
slope of-3x+2y-36=0
|
slope\:-3x+2y-36=0
|
domain of ln(t+3)
|
domain\:\ln(t+3)
|
intercepts of ,(-x^2+100)/((x^2+100)^2)
|
intercepts\:,\frac{-x^{2}+100}{(x^{2}+100)^{2}}
|
asymptotes of 2x(1-x/3)
|
asymptotes\:2x(1-\frac{x}{3})
|
slope intercept of m=-4,\at (-6,6)
|
slope\:intercept\:m=-4,\at\:(-6,6)
|
domain of 8(q-13)
|
domain\:8(q-13)
|
intercepts of f(x)=(x^2+4x+3)/(x+1)
|
intercepts\:f(x)=\frac{x^{2}+4x+3}{x+1}
|
domain of 4/x+6/(x+6)
|
domain\:\frac{4}{x}+\frac{6}{x+6}
|
slope of 2x+3y=12
|
slope\:2x+3y=12
|
inverse of f(x)=6(x^7-4)
|
inverse\:f(x)=6(x^{7}-4)
|
line (2,3)(6,5)
|
line\:(2,3)(6,5)
|
line (-2,8)(6,8)
|
line\:(-2,8)(6,8)
|
domain of log_{3}(x-1)
|
domain\:\log_{3}(x-1)
|
line y=7
|
line\:y=7
|
domain of f(x)=(sqrt(4+x))/(5-x)
|
domain\:f(x)=\frac{\sqrt{4+x}}{5-x}
|
inverse of f(x)=((8x-1))/(2x+5)
|
inverse\:f(x)=\frac{(8x-1)}{2x+5}
|
domain of f(x)=sqrt(3-2x-x^2)
|
domain\:f(x)=\sqrt{3-2x-x^{2}}
|
inverse of f(x)=(2x+3)/(1-5x)
|
inverse\:f(x)=\frac{2x+3}{1-5x}
|
slope intercept of 5x-3y=-15
|
slope\:intercept\:5x-3y=-15
|
domain of f(x)=(sqrt(x-3))/(x-5)
|
domain\:f(x)=\frac{\sqrt{x-3}}{x-5}
|
inverse of f(x)=7^x+4
|
inverse\:f(x)=7^{x}+4
|
extreme points of x+sin(x)
|
extreme\:points\:x+\sin(x)
|
inverse of f(x)= 3/2 x^4
|
inverse\:f(x)=\frac{3}{2}x^{4}
|
domain of sin(x)
|
domain\:\sin(x)
|
line (30*cos(35),30*sin(35)),(0,0)
|
line\:(30\cdot\:\cos(35^{\circ\:}),30\cdot\:\sin(35^{\circ\:})),(0,0)
|
domain of f(x)= 1/(4x+3)
|
domain\:f(x)=\frac{1}{4x+3}
|
line (-8,-4),(6,5)
|
line\:(-8,-4),(6,5)
|
domain of f(x)=-x^3+7x^2-12x
|
domain\:f(x)=-x^{3}+7x^{2}-12x
|
range of f(x)=2x^2-3x-5
|
range\:f(x)=2x^{2}-3x-5
|
midpoint (-3,6)(10,0)
|
midpoint\:(-3,6)(10,0)
|
domain of f(x)=\sqrt[5]{6-x}
|
domain\:f(x)=\sqrt[5]{6-x}
|
intercepts of f(x)=(2x-2)(x+5)(x-3)(x+2)
|
intercepts\:f(x)=(2x-2)(x+5)(x-3)(x+2)
|
extreme points of f(x)=0.5x^2-3x+5
|
extreme\:points\:f(x)=0.5x^{2}-3x+5
|
intercepts of x^2-6x+8
|
intercepts\:x^{2}-6x+8
|
domain of 2(1/2)^x
|
domain\:2(\frac{1}{2})^{x}
|
intercepts of f(y)=2x-4y-12=0
|
intercepts\:f(y)=2x-4y-12=0
|
y=x^2-7
|
y=x^{2}-7
|
range of 9+(8+x)^{1/2}
|
range\:9+(8+x)^{\frac{1}{2}}
|
domain of 1/(x^2-x)
|
domain\:\frac{1}{x^{2}-x}
|
asymptotes of f(x)=-x/(x-1)
|
asymptotes\:f(x)=-\frac{x}{x-1}
|
inverse of y=x^2+x+1
|
inverse\:y=x^{2}+x+1
|
domain of f(x)= x/(9x+64)
|
domain\:f(x)=\frac{x}{9x+64}
|
slope intercept of-2x+y=7
|
slope\:intercept\:-2x+y=7
|
domain of 7x+1
|
domain\:7x+1
|
monotone intervals f(x)= x/(6x^2+1)
|
monotone\:intervals\:f(x)=\frac{x}{6x^{2}+1}
|
range of sqrt(6x^3+8x^2)
|
range\:\sqrt{6x^{3}+8x^{2}}
|
midpoint (-1,2)(-7,0)
|
midpoint\:(-1,2)(-7,0)
|
range of f(x)=(2x^2-3)\div (x^2-1)
|
range\:f(x)=(2x^{2}-3)\div\:(x^{2}-1)
|
inverse of f(x)=x^2-2x+1
|
inverse\:f(x)=x^{2}-2x+1
|
domain of f(x)= 1/((x-3)(x-5))
|
domain\:f(x)=\frac{1}{(x-3)(x-5)}
|
domain of f(x)=x-1x<= 2
|
domain\:f(x)=x-1x\le\:2
|
global extreme points of 2x^3-5x^2+4x+2
|
global\:extreme\:points\:2x^{3}-5x^{2}+4x+2
|
domain of x^2+x+2
|
domain\:x^{2}+x+2
|
slope of-x+3/4 y=-6
|
slope\:-x+\frac{3}{4}y=-6
|
domain of f(x)=-(10)/(sqrt(x-8))
|
domain\:f(x)=-\frac{10}{\sqrt{x-8}}
|
parallel x-4=0
|
parallel\:x-4=0
|
range of |x-5|
|
range\:|x-5|
|
inverse of f(x)=7x-14
|
inverse\:f(x)=7x-14
|
domain of f(x)=3x^3+x/2-\sqrt[3]{x-3}
|
domain\:f(x)=3x^{3}+\frac{x}{2}-\sqrt[3]{x-3}
|
slope intercept of 3x+8y=15
|
slope\:intercept\:3x+8y=15
|
range of f(x)=2^{x+1}
|
range\:f(x)=2^{x+1}
|
parity (x^2+4)\div (7x^4-3x^3+2x^2-8)
|
parity\:(x^{2}+4)\div\:(7x^{4}-3x^{3}+2x^{2}-8)
|
domain of f(x)=8x+9
|
domain\:f(x)=8x+9
|
domain of sqrt(2x-3)
|
domain\:\sqrt{2x-3}
|
line (0,-6)(7,-2)
|
line\:(0,-6)(7,-2)
|
parity x^2+4
|
parity\:x^{2}+4
|
critical points of y=x^2-6x+7
|
critical\:points\:y=x^{2}-6x+7
|
extreme points of f(x)=4x^3
|
extreme\:points\:f(x)=4x^{3}
|
domain of sqrt((3/2)/(|4*3/2-9|))
|
domain\:\sqrt{\frac{\frac{3}{2}}{|4\cdot\:\frac{3}{2}-9|}}
|
inverse of f(x)=3x-15
|
inverse\:f(x)=3x-15
|
domain of g(x)=(5x)/(x^2-36)
|
domain\:g(x)=\frac{5x}{x^{2}-36}
|
domain of f(x)=sqrt(5x-8)
|
domain\:f(x)=\sqrt{5x-8}
|
domain of x/(x+1)
|
domain\:\frac{x}{x+1}
|
critical points of x^4e^{-x/2}
|
critical\:points\:x^{4}e^{-\frac{x}{2}}
|
slope intercept of 9x+6y=36
|
slope\:intercept\:9x+6y=36
|
slope intercept of 4x-2y=14
|
slope\:intercept\:4x-2y=14
|
inverse of (6x+5)/(1-3x)
|
inverse\:\frac{6x+5}{1-3x}
|
domain of f(x)= x/(1-ln(x-2))
|
domain\:f(x)=\frac{x}{1-\ln(x-2)}
|
domain of f(x)=(x^2)/(x+1)
|
domain\:f(x)=\frac{x^{2}}{x+1}
|