domain of f(x)=-(13)/((4+x)^2)
|
domain\:f(x)=-\frac{13}{(4+x)^{2}}
|
inverse of (x+15)/(x-5)
|
inverse\:\frac{x+15}{x-5}
|
asymptotes of 1-x-x^2
|
asymptotes\:1-x-x^{2}
|
inverse of f(x)=x-2
|
inverse\:f(x)=x-2
|
inverse of-2x+5
|
inverse\:-2x+5
|
domain of (x-2)/(x-3)
|
domain\:\frac{x-2}{x-3}
|
distance (2,5)(6,-4)
|
distance\:(2,5)(6,-4)
|
slope of 9x-4y=1
|
slope\:9x-4y=1
|
asymptotes of-ln(x^2-1)
|
asymptotes\:-\ln(x^{2}-1)
|
intercepts of f(x)=4x^2-24x+34
|
intercepts\:f(x)=4x^{2}-24x+34
|
domain of (x/(x+7))/(x/(x+7)+7)
|
domain\:\frac{\frac{x}{x+7}}{\frac{x}{x+7}+7}
|
critical points of f(x)=6x^{2/3}+x^{5/3}
|
critical\:points\:f(x)=6x^{\frac{2}{3}}+x^{\frac{5}{3}}
|
range of f(x)=sqrt(3x-4)
|
range\:f(x)=\sqrt{3x-4}
|
inverse of f(x)= 4/(x-1)-2
|
inverse\:f(x)=\frac{4}{x-1}-2
|
range of 1/(x^2-x)
|
range\:\frac{1}{x^{2}-x}
|
inverse of f(x)=(2x+1)/7
|
inverse\:f(x)=\frac{2x+1}{7}
|
inflection points of f(x)=xe^{2x}
|
inflection\:points\:f(x)=xe^{2x}
|
inverse of f(x)=8(x-3)+4
|
inverse\:f(x)=8(x-3)+4
|
symmetry x^2-2x+1
|
symmetry\:x^{2}-2x+1
|
domain of f(x)=sqrt(-2x+25)
|
domain\:f(x)=\sqrt{-2x+25}
|
domain of x/(1-ln(x-9))
|
domain\:\frac{x}{1-\ln(x-9)}
|
inflection points of f(x)=4x^3-6x^2+7x-8
|
inflection\:points\:f(x)=4x^{3}-6x^{2}+7x-8
|
inverse of f(x)=-8x+16
|
inverse\:f(x)=-8x+16
|
domain of f(x)=x^2-x+2
|
domain\:f(x)=x^{2}-x+2
|
inverse of f(x)=(3x-4)/(2x+11)
|
inverse\:f(x)=\frac{3x-4}{2x+11}
|
domain of f(x)=(x^2-4x+3)/(x-1)
|
domain\:f(x)=\frac{x^{2}-4x+3}{x-1}
|
inverse of f(x)=-13
|
inverse\:f(x)=-13
|
domain of f(x)=(sqrt(2x+3))
|
domain\:f(x)=(\sqrt{2x+3})
|
inverse of f(x)=-(3x-4)/(x-2)
|
inverse\:f(x)=-\frac{3x-4}{x-2}
|
asymptotes of f(x)=-2(7)^x+4
|
asymptotes\:f(x)=-2(7)^{x}+4
|
inverse of f(x)=x^{13}
|
inverse\:f(x)=x^{13}
|
inverse of f(x)=x+17
|
inverse\:f(x)=x+17
|
inverse of f(x)=x^2-16
|
inverse\:f(x)=x^{2}-16
|
range of e^{x-3}+2
|
range\:e^{x-3}+2
|
inverse of g(x)=-2x+65
|
inverse\:g(x)=-2x+65
|
inverse of f(x)=sqrt(2x+4)
|
inverse\:f(x)=\sqrt{2x+4}
|
domain of f(x)= 4/(2x+5)
|
domain\:f(x)=\frac{4}{2x+5}
|
inverse of f(x)=5+(10+x)^{1/2}
|
inverse\:f(x)=5+(10+x)^{\frac{1}{2}}
|
intercepts of f(x)=-0.0017x+0.2625
|
intercepts\:f(x)=-0.0017x+0.2625
|
domain of x^3-12x^2+45x-50
|
domain\:x^{3}-12x^{2}+45x-50
|
intercepts of f(x)=7x-y=21
|
intercepts\:f(x)=7x-y=21
|
asymptotes of f(x)=(-2)/x
|
asymptotes\:f(x)=\frac{-2}{x}
|
intercepts of f(x)=-0.3x+229
|
intercepts\:f(x)=-0.3x+229
|
domain of y=1-x^2
|
domain\:y=1-x^{2}
|
symmetry x^2-y^2=1
|
symmetry\:x^{2}-y^{2}=1
|
midpoint (5,9)\land (10,-1)
|
midpoint\:(5,9)\land\:(10,-1)
|
extreme points of f(x)=e^x(x-2),[0,2]
|
extreme\:points\:f(x)=e^{x}(x-2),[0,2]
|
inverse of (x+11)^2-14
|
inverse\:(x+11)^{2}-14
|
inverse of f(t)=3+2ln(t)
|
inverse\:f(t)=3+2\ln(t)
|
range of x^2+8
|
range\:x^{2}+8
|
domain of f(x)= 3/(x^2+2x)
|
domain\:f(x)=\frac{3}{x^{2}+2x}
|
inverse of f(x)=3^x-15
|
inverse\:f(x)=3^{x}-15
|
inverse of f(x)=3x+7
|
inverse\:f(x)=3x+7
|
domain of sqrt((7x+1)/(4x-3)-2)
|
domain\:\sqrt{\frac{7x+1}{4x-3}-2}
|
slope intercept of y-9= 7/2 (x-2)
|
slope\:intercept\:y-9=\frac{7}{2}(x-2)
|
tanh(x)
|
\tanh(x)
|
midpoint (-3,-1)(9,2)
|
midpoint\:(-3,-1)(9,2)
|
range of sqrt(x^2-2x+5)
|
range\:\sqrt{x^{2}-2x+5}
|
line x=5
|
line\:x=5
|
extreme points of f(x)=-6/(x-7)
|
extreme\:points\:f(x)=-\frac{6}{x-7}
|
amplitude of y= 1/2 cos(3x+pi)-5
|
amplitude\:y=\frac{1}{2}\cos(3x+\pi)-5
|
domain of f(x)=(x^2+20x+1)/(x^2+2x+1)
|
domain\:f(x)=\frac{x^{2}+20x+1}{x^{2}+2x+1}
|
range of 1/(x^2-7x+10)
|
range\:\frac{1}{x^{2}-7x+10}
|
extreme points of f(x)=-1/(x^2+5)
|
extreme\:points\:f(x)=-\frac{1}{x^{2}+5}
|
periodicity of f(x)=2tan(4x-32)
|
periodicity\:f(x)=2\tan(4x-32)
|
inverse of f(x)=ln((x^2+1)/(x^2-1))
|
inverse\:f(x)=\ln(\frac{x^{2}+1}{x^{2}-1})
|
asymptotes of (2x)/(x^2-1)
|
asymptotes\:\frac{2x}{x^{2}-1}
|
inflection points of f(x)=(e^x)/(x^8)
|
inflection\:points\:f(x)=\frac{e^{x}}{x^{8}}
|
extreme points of f(x)=x^4-72x^2+9
|
extreme\:points\:f(x)=x^{4}-72x^{2}+9
|
range of 4/(x^2+x-2)
|
range\:\frac{4}{x^{2}+x-2}
|
domain of f(x)=(1+x^2)/4
|
domain\:f(x)=\frac{1+x^{2}}{4}
|
inverse of x/(x+1)
|
inverse\:\frac{x}{x+1}
|
midpoint (6,3)(10,-7)
|
midpoint\:(6,3)(10,-7)
|
inverse of y=\sqrt[3]{x/7}-9
|
inverse\:y=\sqrt[3]{\frac{x}{7}}-9
|
inverse of f(x)=(3x+5)/(7x+4)
|
inverse\:f(x)=\frac{3x+5}{7x+4}
|
domain of f(x)=sqrt(x)+sqrt(4-x)
|
domain\:f(x)=\sqrt{x}+\sqrt{4-x}
|
domain of sqrt(12-x)
|
domain\:\sqrt{12-x}
|
domain of (36x^2+81x)/((9x-4)^2)
|
domain\:\frac{36x^{2}+81x}{(9x-4)^{2}}
|
domain of f(x)= 3/(y+1)-4
|
domain\:f(x)=\frac{3}{y+1}-4
|
inflection points of (e^x-e^{-x})/2
|
inflection\:points\:\frac{e^{x}-e^{-x}}{2}
|
inverse of f(x)=-7x-1
|
inverse\:f(x)=-7x-1
|
perpendicular 5x-6y=-18
|
perpendicular\:5x-6y=-18
|
slope intercept of 2x+3y=-9
|
slope\:intercept\:2x+3y=-9
|
inverse of f(x)=2(x+2)^3
|
inverse\:f(x)=2(x+2)^{3}
|
domain of f(x)= 1/(x-4)
|
domain\:f(x)=\frac{1}{x-4}
|
intercepts of x^2+2x-8
|
intercepts\:x^{2}+2x-8
|
symmetry y=2(x+1)^2-3
|
symmetry\:y=2(x+1)^{2}-3
|
critical points of f(x)=-x^2-4x-1
|
critical\:points\:f(x)=-x^{2}-4x-1
|
inverse of f(x)=\sqrt[3]{x+4}
|
inverse\:f(x)=\sqrt[3]{x+4}
|
domain of f(x)=\sqrt[3]{x}+2
|
domain\:f(x)=\sqrt[3]{x}+2
|
inverse of f(x)=(5t^2)/2
|
inverse\:f(x)=\frac{5t^{2}}{2}
|
inverse of f(x)=-2
|
inverse\:f(x)=-2
|
inflection points of f(x)=(x+2)/(x-3)
|
inflection\:points\:f(x)=\frac{x+2}{x-3}
|
inflection points of f(x)=e^{-x^3}
|
inflection\:points\:f(x)=e^{-x^{3}}
|
inverse of 2/x-7
|
inverse\:\frac{2}{x}-7
|
domain of sqrt(x(3-x))
|
domain\:\sqrt{x(3-x)}
|
\sqrt[5]{x}
|
\sqrt[5]{x}
|
domain of f(x)=sqrt(3)
|
domain\:f(x)=\sqrt{3}
|
slope of 3-2x
|
slope\:3-2x
|
monotone intervals f(x)=x^2-2x
|
monotone\:intervals\:f(x)=x^{2}-2x
|