inverse g(x)=ln(x+sqrt(x^2+1))
|
inverse\:g(x)=\ln(x+\sqrt{x^{2}+1})
|
inverse f(x)=2x^4-1
|
inverse\:f(x)=2x^{4}-1
|
inverse f(x)=6x+5/x
|
inverse\:f(x)=6x+\frac{5}{x}
|
inverse f(x)=\sqrt[3]{(9-x^2)+5}
|
inverse\:f(x)=\sqrt[3]{(9-x^{2})+5}
|
inverse 1/(x+9)
|
inverse\:\frac{1}{x+9}
|
inverse f(x)=8x^3+9
|
inverse\:f(x)=8x^{3}+9
|
inverse f(x)=|x^2|-x+1
|
inverse\:f(x)=\left|x^{2}\right|-x+1
|
inverse 5/(x^2)
|
inverse\:\frac{5}{x^{2}}
|
range f(x)=(4x-3)/(6-5x)
|
range\:f(x)=\frac{4x-3}{6-5x}
|
inverse (2x-1)/(x+2)
|
inverse\:\frac{2x-1}{x+2}
|
inverse y=e^x-3
|
inverse\:y=e^{x}-3
|
inverse f(x)=(4x)^{2/3}
|
inverse\:f(x)=(4x)^{\frac{2}{3}}
|
inverse f(x)= 9/5 x
|
inverse\:f(x)=\frac{9}{5}x
|
inverse ((x+2))/(x-3)
|
inverse\:\frac{(x+2)}{x-3}
|
inverse f(x)=(x-3)/7
|
inverse\:f(x)=\frac{x-3}{7}
|
inverse f(x)=sqrt(2x)+4
|
inverse\:f(x)=\sqrt{2x}+4
|
inverse log_{3}(y)-3
|
inverse\:\log_{3}(y)-3
|
inverse f(x)=4x^2-7,x>= 0
|
inverse\:f(x)=4x^{2}-7,x\ge\:0
|
inverse y=2x+10
|
inverse\:y=2x+10
|
distance (3,-2)*(3,2)
|
distance\:(3,-2)\cdot\:(3,2)
|
inverse g(x)=x^3+5
|
inverse\:g(x)=x^{3}+5
|
inverse f(x)= x/(3-x)
|
inverse\:f(x)=\frac{x}{3-x}
|
inverse g(x)=x^3-8
|
inverse\:g(x)=x^{3}-8
|
inverse y=7x+1
|
inverse\:y=7x+1
|
inverse f(x)= 1/(3-x)
|
inverse\:f(x)=\frac{1}{3-x}
|
inverse f(x)=(2x)/(2x+4)
|
inverse\:f(x)=\frac{2x}{2x+4}
|
inverse 3x(4-x)
|
inverse\:3x(4-x)
|
inverse (2x)/(3x-4)
|
inverse\:\frac{2x}{3x-4}
|
inverse f(x)=2cos(3x-π/3)+2
|
inverse\:f(x)=2\cos(3x-\frac{π}{3})+2
|
inverse g(x)=sqrt(x-9)+1
|
inverse\:g(x)=\sqrt{x-9}+1
|
domain f(x)=sqrt((x-1)/(x+3))
|
domain\:f(x)=\sqrt{\frac{x-1}{x+3}}
|
inverse f(x)=y=2x+2
|
inverse\:f(x)=y=2x+2
|
inverse f(x)=log_{2}(4x-4)
|
inverse\:f(x)=\log_{2}(4x-4)
|
inverse f(x)=4^x-1
|
inverse\:f(x)=4^{x}-1
|
inverse 2^x+1
|
inverse\:2^{x}+1
|
inverse 2^x+2
|
inverse\:2^{x}+2
|
inverse f(x)=6x^3-7
|
inverse\:f(x)=6x^{3}-7
|
inverse 2^x-1
|
inverse\:2^{x}-1
|
inverse f(x)=6x^3+1
|
inverse\:f(x)=6x^{3}+1
|
inverse f(x)=4\sqrt[5]{x}-2
|
inverse\:f(x)=4\sqrt[5]{x}-2
|
inverse 1-1/x
|
inverse\:1-\frac{1}{x}
|
domain f(x)=5^x-4
|
domain\:f(x)=5^{x}-4
|
inverse f(x)=(-5x+3)/8
|
inverse\:f(x)=\frac{-5x+3}{8}
|
inverse (3x)/(4x-3)
|
inverse\:\frac{3x}{4x-3}
|
inverse-3x+1/2
|
inverse\:-3x+\frac{1}{2}
|
inverse f(x)= 5/(x-1)
|
inverse\:f(x)=\frac{5}{x-1}
|
inverse f(x)=(3x+1)/(2x-1)
|
inverse\:f(x)=\frac{3x+1}{2x-1}
|
inverse sqrt(2x)+5
|
inverse\:\sqrt{2x}+5
|
inverse (2x+5)/(7x+6)
|
inverse\:\frac{2x+5}{7x+6}
|
inverse f(x)=(4x)/(x-3)
|
inverse\:f(x)=\frac{4x}{x-3}
|
inverse sqrt(x)-6
|
inverse\:\sqrt{x}-6
|
inverse sqrt(x)+5
|
inverse\:\sqrt{x}+5
|
asymptotes f(x)=(1-7x)/(1+4x)
|
asymptotes\:f(x)=\frac{1-7x}{1+4x}
|
inverse f(x)= 1/(x^3)+1
|
inverse\:f(x)=\frac{1}{x^{3}}+1
|
inverse f(x)=-8/5 x+8
|
inverse\:f(x)=-\frac{8}{5}x+8
|
inverse f(x)= 1/(x^3)-5
|
inverse\:f(x)=\frac{1}{x^{3}}-5
|
inverse-2x+1
|
inverse\:-2x+1
|
inverse f(x)=12-3x^2
|
inverse\:f(x)=12-3x^{2}
|
inverse f(x)=15x
|
inverse\:f(x)=15x
|
inverse f(x)=(x+9)/(2x)
|
inverse\:f(x)=\frac{x+9}{2x}
|
inverse f(x)=-1/9 x-4
|
inverse\:f(x)=-\frac{1}{9}x-4
|
inverse f(x)=3+sqrt(2+7x)
|
inverse\:f(x)=3+\sqrt{2+7x}
|
inverse f(x)=0.4x^{2/3}
|
inverse\:f(x)=0.4x^{\frac{2}{3}}
|
line m=-1,\at (-0.5,1.5)
|
line\:m=-1,\at\:(-0.5,1.5)
|
inverse y=ln(3x-5)-ln(x+9)+5
|
inverse\:y=\ln(3x-5)-\ln(x+9)+5
|
inverse f(x)=sqrt(((2x-3)/(x+1)+(-1)))
|
inverse\:f(x)=\sqrt{(\frac{2x-3}{x+1}+(-1))}
|
inverse f(x)=(1-2x)/4
|
inverse\:f(x)=\frac{1-2x}{4}
|
inverse f(x)=0.8
|
inverse\:f(x)=0.8
|
inverse (4x+9)/(3x-4)
|
inverse\:\frac{4x+9}{3x-4}
|
inverse y=sqrt(3x)
|
inverse\:y=\sqrt{3x}
|
inverse f(x)=20-20*e^{-ln(10)*x}
|
inverse\:f(x)=20-20\cdot\:e^{-\ln(10)\cdot\:x}
|
inverse f(x)= 5/(7x-1)
|
inverse\:f(x)=\frac{5}{7x-1}
|
inverse f(x)=(x+3)/(x+9)
|
inverse\:f(x)=\frac{x+3}{x+9}
|
inverse f(x)=sqrt(x+1)+4
|
inverse\:f(x)=\sqrt{x+1}+4
|
critical points f(x)=(x-5)^{6/7}
|
critical\:points\:f(x)=(x-5)^{\frac{6}{7}}
|
inverse f(x)=sqrt(x+1)-4
|
inverse\:f(x)=\sqrt{x+1}-4
|
inverse f(x)=sqrt(1-x)+10
|
inverse\:f(x)=\sqrt{1-x}+10
|
inverse y=sqrt(x-7)
|
inverse\:y=\sqrt{x-7}
|
inverse f(x)=100*2^{x/3}
|
inverse\:f(x)=100\cdot\:2^{\frac{x}{3}}
|
inverse f(x)=(3x)/(3+2x)
|
inverse\:f(x)=\frac{3x}{3+2x}
|
inverse y= 1/2 x+6
|
inverse\:y=\frac{1}{2}x+6
|
inverse f(x)=(2x-1)/7
|
inverse\:f(x)=\frac{2x-1}{7}
|
inverse f(x)=-4x-6
|
inverse\:f(x)=-4x-6
|
inverse f(x)=ln(1/(sqrt(x)))
|
inverse\:f(x)=\ln(\frac{1}{\sqrt{x}})
|
inverse f(x)=2x^2+1,x<= 0
|
inverse\:f(x)=2x^{2}+1,x\le\:0
|
extreme points f(x)=(98)/(x^3)
|
extreme\:points\:f(x)=\frac{98}{x^{3}}
|
extreme points f(x)=3x^2+4x+1
|
extreme\:points\:f(x)=3x^{2}+4x+1
|
inverse f(x)=e^{5x+1}
|
inverse\:f(x)=e^{5x+1}
|
inverse f(x)=(2x+3)/(4x+5),x\ne-5/4
|
inverse\:f(x)=\frac{2x+3}{4x+5},x\ne\:-\frac{5}{4}
|
inverse f(x)=((x+2))/(5x-1)
|
inverse\:f(x)=\frac{(x+2)}{5x-1}
|
inverse f(x)=4^{2x+1}
|
inverse\:f(x)=4^{2x+1}
|
inverse f(x)=2sqrt(x-1)-8
|
inverse\:f(x)=2\sqrt{x-1}-8
|
inverse f(x)=(4x)/(x+2)
|
inverse\:f(x)=\frac{4x}{x+2}
|
inverse f(x)=ln((x+1)/(x-1))
|
inverse\:f(x)=\ln(\frac{x+1}{x-1})
|
inverse f(x)=(4x)/(x+3)
|
inverse\:f(x)=\frac{4x}{x+3}
|
inverse f(x)=9+10x
|
inverse\:f(x)=9+10x
|
inverse 3x^{1/2}
|
inverse\:3x^{\frac{1}{2}}
|
inverse f(x)=sqrt(10-3x)
|
inverse\:f(x)=\sqrt{10-3x}
|
inverse f(x)=ln(x+sqrt(1+x^2))
|
inverse\:f(x)=\ln(x+\sqrt{1+x^{2}})
|
inverse f(x)=(x-1)/(12x-9)
|
inverse\:f(x)=\frac{x-1}{12x-9}
|