line Y= 3/4 x-3
|
line\:Y=\frac{3}{4}x-3
|
slope intercept of 2x-y=1
|
slope\:intercept\:2x-y=1
|
parity f(x)=110101000
|
parity\:f(x)=110101000
|
range of 1/x+2
|
range\:\frac{1}{x}+2
|
critical points of f(x)=2-3x+x^3
|
critical\:points\:f(x)=2-3x+x^{3}
|
inflection points of f(x)=-4x^3-12x^2+8
|
inflection\:points\:f(x)=-4x^{3}-12x^{2}+8
|
parity (sin(u^2))/(sin(u))
|
parity\:\frac{\sin(u^{2})}{\sin(u)}
|
range of (3-x^2)/2
|
range\:\frac{3-x^{2}}{2}
|
inverse of f(x)=c(n)=50+4n
|
inverse\:f(x)=c(n)=50+4n
|
asymptotes of (5x^2+1)/(3x-2)
|
asymptotes\:\frac{5x^{2}+1}{3x-2}
|
range of f(x)= x/(x^2+x-6)
|
range\:f(x)=\frac{x}{x^{2}+x-6}
|
asymptotes of 4/(x^2-3x)
|
asymptotes\:\frac{4}{x^{2}-3x}
|
domain of f(x)=4^{x-5}+2
|
domain\:f(x)=4^{x-5}+2
|
domain of f(x)=(sqrt(7+x))/(1-x)
|
domain\:f(x)=\frac{\sqrt{7+x}}{1-x}
|
intercepts of f(x)=(-2x+1)/x
|
intercepts\:f(x)=\frac{-2x+1}{x}
|
domain of f(x)=(x-5)/(3x^2)
|
domain\:f(x)=\frac{x-5}{3x^{2}}
|
extreme points of f(x)=x^3-27x+3
|
extreme\:points\:f(x)=x^{3}-27x+3
|
inverse of g(x)=(7x+18)/2
|
inverse\:g(x)=\frac{7x+18}{2}
|
inverse of f(x)=-3/(-x-3)+2
|
inverse\:f(x)=-\frac{3}{-x-3}+2
|
domain of 5x-9
|
domain\:5x-9
|
asymptotes of (6x)/(x-19)
|
asymptotes\:\frac{6x}{x-19}
|
domain of x^2+6
|
domain\:x^{2}+6
|
domain of f(x)= 1/(sqrt(x-5))
|
domain\:f(x)=\frac{1}{\sqrt{x-5}}
|
critical points of y=x+1/x
|
critical\:points\:y=x+\frac{1}{x}
|
vertex f(x)=y=x^2-x
|
vertex\:f(x)=y=x^{2}-x
|
asymptotes of f(x)=sqrt(1/(x-1))
|
asymptotes\:f(x)=\sqrt{\frac{1}{x-1}}
|
inverse of f(x)=19+\sqrt[3]{x}
|
inverse\:f(x)=19+\sqrt[3]{x}
|
asymptotes of (-4x-20)/(x^2-25)
|
asymptotes\:\frac{-4x-20}{x^{2}-25}
|
domain of g(x)=x-2
|
domain\:g(x)=x-2
|
slope intercept of 2x+2y=16
|
slope\:intercept\:2x+2y=16
|
domain of f(x)=(0,-4)
|
domain\:f(x)=(0,-4)
|
distance (1,7)(-4,6)
|
distance\:(1,7)(-4,6)
|
slope of y-2= 9/2 (x+8)
|
slope\:y-2=\frac{9}{2}(x+8)
|
amplitude of f(x)=4cos(pi(x+1/4))
|
amplitude\:f(x)=4\cos(\pi(x+\frac{1}{4}))
|
domain of (sqrt(x))(x-15)
|
domain\:(\sqrt{x})(x-15)
|
slope intercept of (6,-1)4
|
slope\:intercept\:(6,-1)4
|
asymptotes of f(x)=(sqrt(4x^2+1))/(3x-5)
|
asymptotes\:f(x)=\frac{\sqrt{4x^{2}+1}}{3x-5}
|
domain of f(x)=|x|
|
domain\:f(x)=\left|x\right|
|
domain of f(x)=(3x)/((x-2)(x+7))
|
domain\:f(x)=\frac{3x}{(x-2)(x+7)}
|
inverse of (-2x-1)/(x+5)
|
inverse\:\frac{-2x-1}{x+5}
|
slope of 4x
|
slope\:4x
|
domain of f(x)=2(x-1)^{5/2}
|
domain\:f(x)=2(x-1)^{\frac{5}{2}}
|
parity f(x)= 1/(x^2+4)
|
parity\:f(x)=\frac{1}{x^{2}+4}
|
range of 2/(x-4)-3
|
range\:\frac{2}{x-4}-3
|
domain of f(x)= 5/(sqrt(t))
|
domain\:f(x)=\frac{5}{\sqrt{t}}
|
critical points of (x+1)^3
|
critical\:points\:(x+1)^{3}
|
slope of 0.2x+0.3y=0.5
|
slope\:0.2x+0.3y=0.5
|
extreme points of 12x^3
|
extreme\:points\:12x^{3}
|
domain of f(x)=sqrt(t+1)
|
domain\:f(x)=\sqrt{t+1}
|
asymptotes of f(x)= x/(x(x+6))
|
asymptotes\:f(x)=\frac{x}{x(x+6)}
|
inverse of f(x)=sqrt(x)+2
|
inverse\:f(x)=\sqrt{x}+2
|
domain of f(x)=x^2-4x+8
|
domain\:f(x)=x^{2}-4x+8
|
slope of 3x+5y=15
|
slope\:3x+5y=15
|
intercepts of 2/(x+1)
|
intercepts\:\frac{2}{x+1}
|
y=10^x
|
y=10^{x}
|
symmetry 5x-5y=0
|
symmetry\:5x-5y=0
|
parity f(x)=x^5+\sqrt[3]{x}+1
|
parity\:f(x)=x^{5}+\sqrt[3]{x}+1
|
inverse of f(x)=-x^5-2
|
inverse\:f(x)=-x^{5}-2
|
critical points of f(x)=ln(x-9)
|
critical\:points\:f(x)=\ln(x-9)
|
perpendicular y=0
|
perpendicular\:y=0
|
inverse of f(x)=-2x^3
|
inverse\:f(x)=-2x^{3}
|
asymptotes of (x+1)/(x-4)
|
asymptotes\:\frac{x+1}{x-4}
|
domain of f(x)= x/(2x^2-50)
|
domain\:f(x)=\frac{x}{2x^{2}-50}
|
inverse of f(x)=((7x+18))/2
|
inverse\:f(x)=\frac{(7x+18)}{2}
|
inverse of f(x)= 1/x-6
|
inverse\:f(x)=\frac{1}{x}-6
|
asymptotes of f(x)=(x-2)/(6x^2-8x-8)
|
asymptotes\:f(x)=\frac{x-2}{6x^{2}-8x-8}
|
domain of (x+6)/(4-sqrt(x^2-9))
|
domain\:\frac{x+6}{4-\sqrt{x^{2}-9}}
|
global extreme points of x^3-12x+1
|
global\:extreme\:points\:x^{3}-12x+1
|
frequency f(x)= 1/4 cos(2x)+5
|
frequency\:f(x)=\frac{1}{4}\cos(2x)+5
|
f(x)=1-x^2
|
f(x)=1-x^{2}
|
domain of f(x)=sqrt(x^2+3x+2)
|
domain\:f(x)=\sqrt{x^{2}+3x+2}
|
monotone intervals f(x)=sqrt(x^2-9)
|
monotone\:intervals\:f(x)=\sqrt{x^{2}-9}
|
inverse of f(x)=(x+7)^{1/2}
|
inverse\:f(x)=(x+7)^{\frac{1}{2}}
|
intercepts of f(x)=e^x
|
intercepts\:f(x)=e^{x}
|
parallel y=3x-2,\at (2,11)
|
parallel\:y=3x-2,\at\:(2,11)
|
inverse of log_{2}(2x)
|
inverse\:\log_{2}(2x)
|
slope intercept of 17x+y=-9
|
slope\:intercept\:17x+y=-9
|
intercepts of f(x)=x(x+6)^2(x^2-x-12)
|
intercepts\:f(x)=x(x+6)^{2}(x^{2}-x-12)
|
intercepts of f(x)=(x+3)(x-1)
|
intercepts\:f(x)=(x+3)(x-1)
|
range of-x^2-3
|
range\:-x^{2}-3
|
domain of f(x)= x/(4x^2)
|
domain\:f(x)=\frac{x}{4x^{2}}
|
inverse of f(x)=(-3-4r)/(2+3r)
|
inverse\:f(x)=\frac{-3-4r}{2+3r}
|
inverse of 2-3e^{x-4}
|
inverse\:2-3e^{x-4}
|
slope of y=(-2xy)/(x^2+4),\at x=2
|
slope\:y=\frac{-2xy}{x^{2}+4},\at\:x=2
|
slope of y-3=4(x+8)
|
slope\:y-3=4(x+8)
|
line (1,)(1,)
|
line\:(1,)(1,)
|
intercepts of f(x)=-x+2y=6
|
intercepts\:f(x)=-x+2y=6
|
domain of f(x)=3x^2+x-2
|
domain\:f(x)=3x^{2}+x-2
|
domain of f(x)=(sqrt(6+x))/(7-x)
|
domain\:f(x)=\frac{\sqrt{6+x}}{7-x}
|
range of f(x)=(x-7)/(3x-5)
|
range\:f(x)=\frac{x-7}{3x-5}
|
monotone intervals f(x)=x^2-4x
|
monotone\:intervals\:f(x)=x^{2}-4x
|
inverse of (x-6)^2
|
inverse\:(x-6)^{2}
|
range of g(x)=x+3
|
range\:g(x)=x+3
|
range of x^2-7
|
range\:x^{2}-7
|
domain of f(x)=((x+7)(x-9))/((x-3)(x+7))
|
domain\:f(x)=\frac{(x+7)(x-9)}{(x-3)(x+7)}
|
intercepts of-x^2(x-2)^3(x+4)
|
intercepts\:-x^{2}(x-2)^{3}(x+4)
|
y=(x-4)^2
|
y=(x-4)^{2}
|
intercepts of f(x)=-x
|
intercepts\:f(x)=-x
|
domain of sec(2x-3pi)
|
domain\:\sec(2x-3\pi)
|
range of-5cos((pi)/4 x)-1
|
range\:-5\cos(\frac{\pi}{4}x)-1
|