domain of f(x)=(7x)/(x-8)
|
domain\:f(x)=\frac{7x}{x-8}
|
parity f(x)=x^2|x|+9
|
parity\:f(x)=x^{2}|x|+9
|
intercepts of x^3+3x^2+3x+2
|
intercepts\:x^{3}+3x^{2}+3x+2
|
inverse of f(x)=sqrt((x^2-x-20)/(x-2))
|
inverse\:f(x)=\sqrt{\frac{x^{2}-x-20}{x-2}}
|
domain of (sqrt(x-1))/(2x^2-15x+25)
|
domain\:\frac{\sqrt{x-1}}{2x^{2}-15x+25}
|
domain of f(x)= 1/(x^2+5x-14)
|
domain\:f(x)=\frac{1}{x^{2}+5x-14}
|
inverse of f(x)=7+(10+x)^{1/2}
|
inverse\:f(x)=7+(10+x)^{\frac{1}{2}}
|
shift 2sin(pi x+5)-4
|
shift\:2\sin(\pi\:x+5)-4
|
intercepts of f(x)=3x-6y=-12
|
intercepts\:f(x)=3x-6y=-12
|
inverse of f(x)=sqrt(x+2)+2
|
inverse\:f(x)=\sqrt{x+2}+2
|
inverse of f(x)=2^x=1000
|
inverse\:f(x)=2^{x}=1000
|
critical points of cos(x)
|
critical\:points\:\cos(x)
|
intercepts of f(x)=11x+12y=8
|
intercepts\:f(x)=11x+12y=8
|
domain of y=(x-4)/(16-4x)
|
domain\:y=\frac{x-4}{16-4x}
|
domain of f(x)=(x+1)/(2x-4)
|
domain\:f(x)=\frac{x+1}{2x-4}
|
line (500,1),(700,0)
|
line\:(500,1),(700,0)
|
line m= 3/4 ,\at (-5,8)
|
line\:m=\frac{3}{4},\at\:(-5,8)
|
asymptotes of f(x)=(-6x)/(x^2+5)
|
asymptotes\:f(x)=\frac{-6x}{x^{2}+5}
|
critical points of 12x^5+15x^4-240x^3+6
|
critical\:points\:12x^{5}+15x^{4}-240x^{3}+6
|
asymptotes of f(x)=3sec(2/3 x)
|
asymptotes\:f(x)=3\sec(\frac{2}{3}x)
|
amplitude of-cos(2x)
|
amplitude\:-\cos(2x)
|
slope of y=2x+7
|
slope\:y=2x+7
|
asymptotes of f(x)=(x+1)/((x-3)^2)
|
asymptotes\:f(x)=\frac{x+1}{(x-3)^{2}}
|
domain of (5(x+5))/x
|
domain\:\frac{5(x+5)}{x}
|
slope intercept of-3x=6-y
|
slope\:intercept\:-3x=6-y
|
asymptotes of f(x)=(4x^2+x-6)/(x^2+x-42)
|
asymptotes\:f(x)=\frac{4x^{2}+x-6}{x^{2}+x-42}
|
inverse of f(x)=2x-3/5
|
inverse\:f(x)=2x-\frac{3}{5}
|
parity f(x)=(2tan(x))/(3x^2-2)
|
parity\:f(x)=\frac{2\tan(x)}{3x^{2}-2}
|
extreme points of f(x)=x^3+11x-4
|
extreme\:points\:f(x)=x^{3}+11x-4
|
domain of log_{10}(x-3)
|
domain\:\log_{10}(x-3)
|
domain of 1/(6x)
|
domain\:\frac{1}{6x}
|
domain of f(x)=4x+6
|
domain\:f(x)=4x+6
|
domain of f(x)=x^2+22
|
domain\:f(x)=x^{2}+22
|
asymptotes of f(x)=-4/x
|
asymptotes\:f(x)=-\frac{4}{x}
|
parallel 2x+3y=7,\at (4,3)
|
parallel\:2x+3y=7,\at\:(4,3)
|
extreme points of f(x)=x^3-3x^2-9x
|
extreme\:points\:f(x)=x^{3}-3x^{2}-9x
|
domain of sqrt(x+5)
|
domain\:\sqrt{x+5}
|
asymptotes of f(x)=(x^2-x-2)/(x-1)
|
asymptotes\:f(x)=\frac{x^{2}-x-2}{x-1}
|
extreme points of f(x)=-0.3x^2+2.4x+98.4
|
extreme\:points\:f(x)=-0.3x^{2}+2.4x+98.4
|
domain of f(x)=sqrt((-x)/(8-x))
|
domain\:f(x)=\sqrt{\frac{-x}{8-x}}
|
inverse of y=(-2)/x
|
inverse\:y=\frac{-2}{x}
|
extreme points of f(x)= x/(x+3)
|
extreme\:points\:f(x)=\frac{x}{x+3}
|
extreme points of f(x)=\sqrt[3]{x-5}
|
extreme\:points\:f(x)=\sqrt[3]{x-5}
|
asymptotes of f(x)=x^2+5
|
asymptotes\:f(x)=x^{2}+5
|
frequency 2cos(2x-1)+4
|
frequency\:2\cos(2x-1)+4
|
inverse of f(x)=(2-10t)^{5/2}
|
inverse\:f(x)=(2-10t)^{\frac{5}{2}}
|
parity f(x)=((3x+x^3+2))/(4x^3-3x^2-5)
|
parity\:f(x)=\frac{(3x+x^{3}+2)}{4x^{3}-3x^{2}-5}
|
inverse of 222
|
inverse\:222
|
inverse of f(x)=(x-3)/(x+3)
|
inverse\:f(x)=\frac{x-3}{x+3}
|
inverse of f(x)=sqrt(8x+1)
|
inverse\:f(x)=\sqrt{8x+1}
|
asymptotes of 1/(x+1)+1/(x-3)
|
asymptotes\:\frac{1}{x+1}+\frac{1}{x-3}
|
inflection points of f(x)=x*e^{1/x}
|
inflection\:points\:f(x)=x\cdot\:e^{\frac{1}{x}}
|
domain of 1/(2sqrt(x))+1
|
domain\:\frac{1}{2\sqrt{x}}+1
|
parity f(x)=(9x^3+2x+8)/(7x^3+3x-1)
|
parity\:f(x)=\frac{9x^{3}+2x+8}{7x^{3}+3x-1}
|
slope intercept of 2x+5y=-7
|
slope\:intercept\:2x+5y=-7
|
inverse of f(x)=e^{x/5}
|
inverse\:f(x)=e^{\frac{x}{5}}
|
intercepts of f(x)=(x^2-5)(2x^2-5)
|
intercepts\:f(x)=(x^{2}-5)(2x^{2}-5)
|
inverse of f(x)=x^2-4,x>= 0
|
inverse\:f(x)=x^{2}-4,x\ge\:0
|
extreme points of f(x)=x^3-75x+5
|
extreme\:points\:f(x)=x^{3}-75x+5
|
inverse of f(x)=(3x+2)/(x-5)
|
inverse\:f(x)=\frac{3x+2}{x-5}
|
inverse of f(x)= x/2+5
|
inverse\:f(x)=\frac{x}{2}+5
|
parity f(x)=-2x^5+7x^3
|
parity\:f(x)=-2x^{5}+7x^{3}
|
intercepts of f(x)=x^3-64
|
intercepts\:f(x)=x^{3}-64
|
midpoint (-4,3)(2,-5)
|
midpoint\:(-4,3)(2,-5)
|
asymptotes of f(x)=(-3x+10)/(2x)
|
asymptotes\:f(x)=\frac{-3x+10}{2x}
|
domain of f(x)=ln(1-x^2)
|
domain\:f(x)=\ln(1-x^{2})
|
range of-x^2-2x+3
|
range\:-x^{2}-2x+3
|
monotone intervals =2x^3-4x^2
|
monotone\:intervals\:=2x^{3}-4x^{2}
|
domain of f(x)=sqrt(8x-3)
|
domain\:f(x)=\sqrt{8x-3}
|
domain of f(x)=xsqrt(256-x^2)
|
domain\:f(x)=x\sqrt{256-x^{2}}
|
inverse of x/(x+4)
|
inverse\:\frac{x}{x+4}
|
distance (-3,-3)(2,9)
|
distance\:(-3,-3)(2,9)
|
extreme points of f(x)=x^2+2y^2x^2+y^2=1
|
extreme\:points\:f(x)=x^{2}+2y^{2}x^{2}+y^{2}=1
|
inverse of f(x)=(4x+2)/(3x-6)
|
inverse\:f(x)=\frac{4x+2}{3x-6}
|
domain of f(x)=\sqrt[3]{x^3+3}
|
domain\:f(x)=\sqrt[3]{x^{3}+3}
|
asymptotes of (1/2)^{x-1}+5
|
asymptotes\:(\frac{1}{2})^{x-1}+5
|
asymptotes of f(x)=(4x)/(x^2-4)
|
asymptotes\:f(x)=\frac{4x}{x^{2}-4}
|
domain of f(x)=sqrt((x+4)/(x-2))
|
domain\:f(x)=\sqrt{\frac{x+4}{x-2}}
|
domain of f(x)=sqrt(20-5x)
|
domain\:f(x)=\sqrt{20-5x}
|
domain of f(x)=(sqrt(2x+9))/(x-2)
|
domain\:f(x)=\frac{\sqrt{2x+9}}{x-2}
|
inverse of f(x)=3-2x-x^2
|
inverse\:f(x)=3-2x-x^{2}
|
monotone intervals f(x)=(x+2)/(x^2-4)
|
monotone\:intervals\:f(x)=\frac{x+2}{x^{2}-4}
|
domain of f(x)=sqrt((16-x^2)/(x+3))
|
domain\:f(x)=\sqrt{\frac{16-x^{2}}{x+3}}
|
line 2x-3y=8
|
line\:2x-3y=8
|
line (1,3)(2,5)
|
line\:(1,3)(2,5)
|
asymptotes of f(x)=6tan(0.2x)
|
asymptotes\:f(x)=6\tan(0.2x)
|
range of f(x)= 3/(x+4)
|
range\:f(x)=\frac{3}{x+4}
|
domain of f(x)=2-sqrt(3-x)
|
domain\:f(x)=2-\sqrt{3-x}
|
inverse of f(x)=-5sqrt(x)
|
inverse\:f(x)=-5\sqrt{x}
|
extreme points of f(x)=-4x^3+2x^2-7
|
extreme\:points\:f(x)=-4x^{3}+2x^{2}-7
|
range of-(x^2)/2-2x
|
range\:-\frac{x^{2}}{2}-2x
|
extreme points of f(x)=2x^3+3x^2-36x
|
extreme\:points\:f(x)=2x^{3}+3x^{2}-36x
|
intercepts of 3x^2
|
intercepts\:3x^{2}
|
domain of x/(x+8)+(x-8)/x
|
domain\:\frac{x}{x+8}+\frac{x-8}{x}
|
inflection points of f(x)=2x^3-3x^2
|
inflection\:points\:f(x)=2x^{3}-3x^{2}
|
inverse of (9x+4)/(x-7)
|
inverse\:\frac{9x+4}{x-7}
|
domain of sqrt(-x)-5
|
domain\:\sqrt{-x}-5
|
slope of y=17
|
slope\:y=17
|
parity f(x)=x^4+2x^2
|
parity\:f(x)=x^{4}+2x^{2}
|
domain of f(x)=6x+5
|
domain\:f(x)=6x+5
|