range of f(x)=x
|
range\:f(x)=x
|
slope intercept of 9
|
slope\:intercept\:9
|
inverse of sqrt(2+5x)
|
inverse\:\sqrt{2+5x}
|
domain of x-6
|
domain\:x-6
|
intercepts of f(x)=3x-2
|
intercepts\:f(x)=3x-2
|
inverse of f(x)=ln(((x+3))/x)
|
inverse\:f(x)=\ln(\frac{(x+3)}{x})
|
inverse of f(x)=x^2+4x+4
|
inverse\:f(x)=x^{2}+4x+4
|
domain of f(x)=((2x+3))/(x(x^2+2x-3))
|
domain\:f(x)=\frac{(2x+3)}{x(x^{2}+2x-3)}
|
inverse of f(x)=23(x-11)
|
inverse\:f(x)=23(x-11)
|
intercepts of f(x)=y=x^2-2x-3
|
intercepts\:f(x)=y=x^{2}-2x-3
|
inverse of f(x)=(8-x)/5
|
inverse\:f(x)=\frac{8-x}{5}
|
extreme points of f(x)=-x^3+x^2+4x-2
|
extreme\:points\:f(x)=-x^{3}+x^{2}+4x-2
|
slope of y=6x
|
slope\:y=6x
|
inverse of f(x)=(18x+1)^2
|
inverse\:f(x)=(18x+1)^{2}
|
domain of x^3-2
|
domain\:x^{3}-2
|
extreme points of f(x)=-4-3x-x^2
|
extreme\:points\:f(x)=-4-3x-x^{2}
|
asymptotes of sqrt(3-2x-x^2)
|
asymptotes\:\sqrt{3-2x-x^{2}}
|
inverse of f(x)=\sqrt[3]{6x-7}
|
inverse\:f(x)=\sqrt[3]{6x-7}
|
asymptotes of f(x)=(9x^2+36x+41)/(3x+5)
|
asymptotes\:f(x)=\frac{9x^{2}+36x+41}{3x+5}
|
domain of f(x)=sqrt(1-sin^2(x))
|
domain\:f(x)=\sqrt{1-\sin^{2}(x)}
|
asymptotes of f(x)=2tan(pi x)
|
asymptotes\:f(x)=2\tan(\pi\:x)
|
inverse of f(x)=(x-15)^2,x<= 15
|
inverse\:f(x)=(x-15)^{2},x\le\:15
|
domain of f(x)=20x^3
|
domain\:f(x)=20x^{3}
|
range of x^2-2x+5
|
range\:x^{2}-2x+5
|
inverse of f(x)=(3x-5)/(x+1)
|
inverse\:f(x)=\frac{3x-5}{x+1}
|
monotone intervals x-1/x
|
monotone\:intervals\:x-\frac{1}{x}
|
critical points of f(x)=(x-2)/(x^2+5x+4)
|
critical\:points\:f(x)=\frac{x-2}{x^{2}+5x+4}
|
range of 3/(x+1)
|
range\:\frac{3}{x+1}
|
inverse of f(x)=6+2^{7x-1}
|
inverse\:f(x)=6+2^{7x-1}
|
critical points of f(x)=(x-5)^3
|
critical\:points\:f(x)=(x-5)^{3}
|
domain of f(x)= 2/(sqrt(x^2+1))
|
domain\:f(x)=\frac{2}{\sqrt{x^{2}+1}}
|
parity s(t)=(7t)/(sin(t))
|
parity\:s(t)=\frac{7t}{\sin(t)}
|
inverse of f(x)=\sqrt[3]{-x+2}
|
inverse\:f(x)=\sqrt[3]{-x+2}
|
domain of x^4+1
|
domain\:x^{4}+1
|
inverse of f(x)=2x+5y=10
|
inverse\:f(x)=2x+5y=10
|
midpoint (-1,-6)(4,5)
|
midpoint\:(-1,-6)(4,5)
|
line (-2,2)(3,4)
|
line\:(-2,2)(3,4)
|
domain of f(x)=-7x(x-5)(x-7)
|
domain\:f(x)=-7x(x-5)(x-7)
|
domain of f(x)=(2x+5)/(x-4)
|
domain\:f(x)=\frac{2x+5}{x-4}
|
range of f(x)=((x-1))/(x(x^2-9))
|
range\:f(x)=\frac{(x-1)}{x(x^{2}-9)}
|
range of f(x)= 4/x-5
|
range\:f(x)=\frac{4}{x}-5
|
domain of sqrt(3x)-5x-8
|
domain\:\sqrt{3x}-5x-8
|
domain of f(x)=sin(x/2+1)-1
|
domain\:f(x)=\sin(\frac{x}{2}+1)-1
|
domain of f(x)= x/(ln(x-1))
|
domain\:f(x)=\frac{x}{\ln(x-1)}
|
asymptotes of 2x^2+7x+3
|
asymptotes\:2x^{2}+7x+3
|
range of f(x)=sqrt(25-x^2)
|
range\:f(x)=\sqrt{25-x^{2}}
|
slope of y=-9
|
slope\:y=-9
|
midpoint (-5,5)(2,7)
|
midpoint\:(-5,5)(2,7)
|
critical points of f(x)=sin(5x)
|
critical\:points\:f(x)=\sin(5x)
|
inverse of f(x)=sqrt(-4x^2+12)
|
inverse\:f(x)=\sqrt{-4x^{2}+12}
|
inverse of f(x)=ln(8x)
|
inverse\:f(x)=\ln(8x)
|
inverse of f(x)=5-4x^2
|
inverse\:f(x)=5-4x^{2}
|
domain of f(x)= 4/(x^2-1)
|
domain\:f(x)=\frac{4}{x^{2}-1}
|
extreme points of f(x)=x+((4))/((x+1))
|
extreme\:points\:f(x)=x+\frac{(4)}{(x+1)}
|
inverse of f(x)=(3x+5)/7
|
inverse\:f(x)=\frac{3x+5}{7}
|
intercepts of x^2+4x-12
|
intercepts\:x^{2}+4x-12
|
asymptotes of f(x)= 4/(x^2-x-2)
|
asymptotes\:f(x)=\frac{4}{x^{2}-x-2}
|
inverse of f(x)=(x+2)/(3x+1)
|
inverse\:f(x)=\frac{x+2}{3x+1}
|
distance (-2,5)(4,1)
|
distance\:(-2,5)(4,1)
|
domain of f(x)=(4x)/(7-x)
|
domain\:f(x)=\frac{4x}{7-x}
|
domain of 5t+6
|
domain\:5t+6
|
parity f(x)=x^5+3x^3-x
|
parity\:f(x)=x^{5}+3x^{3}-x
|
domain of f(x)=3sqrt(x+2)+3
|
domain\:f(x)=3\sqrt{x+2}+3
|
parity f(x)= x/(x^2+2)
|
parity\:f(x)=\frac{x}{x^{2}+2}
|
intercepts of f(x)=x^2-xy+y=1
|
intercepts\:f(x)=x^{2}-xy+y=1
|
domain of f(x)=(x-6)^2+8
|
domain\:f(x)=(x-6)^{2}+8
|
domain of f(x)=(x^2+4x+3)/(x^2+3x+2)
|
domain\:f(x)=\frac{x^{2}+4x+3}{x^{2}+3x+2}
|
slope of y=-3/4 x+3
|
slope\:y=-\frac{3}{4}x+3
|
domain of y=3^x
|
domain\:y=3^{x}
|
range of 3sqrt(x+5)-8
|
range\:3\sqrt{x+5}-8
|
extreme points of 4x(x^2-9)
|
extreme\:points\:4x(x^{2}-9)
|
domain of sqrt(-1/2 x^2+2x+3)
|
domain\:\sqrt{-\frac{1}{2}x^{2}+2x+3}
|
extreme points of f(x)=(x-2)(x-5)^3+11
|
extreme\:points\:f(x)=(x-2)(x-5)^{3}+11
|
domain of xe^{-x}
|
domain\:xe^{-x}
|
inverse of f(x)= x/3
|
inverse\:f(x)=\frac{x}{3}
|
extreme points of (x^2-1)^3
|
extreme\:points\:(x^{2}-1)^{3}
|
asymptotes of 2*3^x
|
asymptotes\:2\cdot\:3^{x}
|
intercepts of (x-4)/(x+2)
|
intercepts\:\frac{x-4}{x+2}
|
slope of 30
|
slope\:30
|
critical points of 15-5(x+3)^2
|
critical\:points\:15-5(x+3)^{2}
|
asymptotes of f(x)=(x^2+8x+12)/(x+2)
|
asymptotes\:f(x)=\frac{x^{2}+8x+12}{x+2}
|
domain of 2x+8
|
domain\:2x+8
|
inverse of f(x)=x^2-2x+3
|
inverse\:f(x)=x^{2}-2x+3
|
parity 2^{x+1}+1
|
parity\:2^{x+1}+1
|
slope intercept of x-y=-3
|
slope\:intercept\:x-y=-3
|
domain of x/(9x-8)
|
domain\:\frac{x}{9x-8}
|
monotone intervals (x^3+1)/(x^2)
|
monotone\:intervals\:\frac{x^{3}+1}{x^{2}}
|
periodicity of-1/5 cos(1/5 x)
|
periodicity\:-\frac{1}{5}\cos(\frac{1}{5}x)
|
inverse of ln(x+2)
|
inverse\:\ln(x+2)
|
critical points of f(x)=t^4-20t^3+112t^2
|
critical\:points\:f(x)=t^{4}-20t^{3}+112t^{2}
|
critical points of cos(x),0<= x<= 2pi
|
critical\:points\:\cos(x),0\le\:x\le\:2\pi
|
range of y=sqrt(x-3)
|
range\:y=\sqrt{x-3}
|
extreme points of f(x)=(x+8)^5
|
extreme\:points\:f(x)=(x+8)^{5}
|
inverse of f(x)=(9x+4)/(x-1)
|
inverse\:f(x)=\frac{9x+4}{x-1}
|
domain of f(x)=\sqrt[4]{x^2-7x+12}
|
domain\:f(x)=\sqrt[4]{x^{2}-7x+12}
|
midpoint (5,1)(4,0)
|
midpoint\:(5,1)(4,0)
|
inverse of f(x)=(x-1)/(2x+1)
|
inverse\:f(x)=\frac{x-1}{2x+1}
|
periodicity of f(x)=105-20sin((5pi)/4 x)
|
periodicity\:f(x)=105-20\sin(\frac{5\pi}{4}x)
|
slope of 3x-2y=6
|
slope\:3x-2y=6
|
inverse of sqrt(36-x^2)
|
inverse\:\sqrt{36-x^{2}}
|