inverse of f(x)= 4/5 (x-15)
|
inverse\:f(x)=\frac{4}{5}(x-15)
|
inverse of f(x)=(2x+3)/(x+4)
|
inverse\:f(x)=\frac{2x+3}{x+4}
|
domain of 1/(\sqrt[4]{x^2-7x)}
|
domain\:\frac{1}{\sqrt[4]{x^{2}-7x}}
|
parallel y=-x+6,\at (-2,0)
|
parallel\:y=-x+6,\at\:(-2,0)
|
domain of f(x)= 1/(1-tan(x))
|
domain\:f(x)=\frac{1}{1-\tan(x)}
|
inverse of log_{10}(x+2)-3
|
inverse\:\log_{10}(x+2)-3
|
slope of f(x)= 1/2 x
|
slope\:f(x)=\frac{1}{2}x
|
inflection points of f(x)=5x^3-3x
|
inflection\:points\:f(x)=5x^{3}-3x
|
extreme points of f(x)=x^2-2x+3
|
extreme\:points\:f(x)=x^{2}-2x+3
|
distance (1,3)(-2,9)
|
distance\:(1,3)(-2,9)
|
intercepts of 2x^2+16x+12
|
intercepts\:2x^{2}+16x+12
|
range of f(x)=sqrt(-x^2-4x+12)
|
range\:f(x)=\sqrt{-x^{2}-4x+12}
|
symmetry y=x^2-9x
|
symmetry\:y=x^{2}-9x
|
domain of sqrt(9-t)
|
domain\:\sqrt{9-t}
|
asymptotes of f(x)=x+(17)/x
|
asymptotes\:f(x)=x+\frac{17}{x}
|
inverse of f(x)=9x+5
|
inverse\:f(x)=9x+5
|
range of x^2+6x+5
|
range\:x^{2}+6x+5
|
domain of f(x)=sqrt(4x-9)
|
domain\:f(x)=\sqrt{4x-9}
|
domain of g(t)= 3/(sqrt(t))
|
domain\:g(t)=\frac{3}{\sqrt{t}}
|
domain of f(x)=sqrt(-x^2-4x-4)
|
domain\:f(x)=\sqrt{-x^{2}-4x-4}
|
inverse of f(x)=log_{8}(x)
|
inverse\:f(x)=\log_{8}(x)
|
inverse of y=3+3x
|
inverse\:y=3+3x
|
critical points of f(x)=-2/(x^2)
|
critical\:points\:f(x)=-\frac{2}{x^{2}}
|
critical points of f(x)=x^4-3x^2+6
|
critical\:points\:f(x)=x^{4}-3x^{2}+6
|
inflection points of x/(x+5)
|
inflection\:points\:\frac{x}{x+5}
|
slope intercept of (2,5),-8x+y-8=0
|
slope\:intercept\:(2,5),-8x+y-8=0
|
inverse of f(x)=1-2e^{-2x}
|
inverse\:f(x)=1-2e^{-2x}
|
monotone intervals 2x^2-12x+20
|
monotone\:intervals\:2x^{2}-12x+20
|
domain of f(x)=2x^2+x-4
|
domain\:f(x)=2x^{2}+x-4
|
perpendicular y=-x/2-6(-8,1)
|
perpendicular\:y=-\frac{x}{2}-6(-8,1)
|
domain of f(x)=sqrt(3+(x^2-10)/(x-2))
|
domain\:f(x)=\sqrt{3+\frac{x^{2}-10}{x-2}}
|
vertex f(x)=y=x^2+2x+18
|
vertex\:f(x)=y=x^{2}+2x+18
|
domain of f(x)=sqrt(x^2-6x+8)
|
domain\:f(x)=\sqrt{x^{2}-6x+8}
|
range of (2x)/(x^2+2x)
|
range\:\frac{2x}{x^{2}+2x}
|
line (4,0),(20,18)
|
line\:(4,0),(20,18)
|
inflection points of (3-x)e^{-x}
|
inflection\:points\:(3-x)e^{-x}
|
range of y= 1/x
|
range\:y=\frac{1}{x}
|
inverse of f(x)=4x^3+5
|
inverse\:f(x)=4x^{3}+5
|
asymptotes of f(x)=(x+1)/(x^2+8x)
|
asymptotes\:f(x)=\frac{x+1}{x^{2}+8x}
|
inverse of f(x)=5x-9
|
inverse\:f(x)=5x-9
|
range of sqrt(3x-1)+5
|
range\:\sqrt{3x-1}+5
|
domain of (x+3)^5
|
domain\:(x+3)^{5}
|
sin(2θ)
|
\sin(2θ)
|
slope intercept of y=-x-5
|
slope\:intercept\:y=-x-5
|
line (4,-12)(4,-1)
|
line\:(4,-12)(4,-1)
|
inverse of f(x)=5x-12
|
inverse\:f(x)=5x-12
|
y=5x+2
|
y=5x+2
|
intercepts of f(x)=x^3+x^2-4x-4
|
intercepts\:f(x)=x^{3}+x^{2}-4x-4
|
range of tan(2x)
|
range\:\tan(2x)
|
parity =tan(narctan((2sqrt(r))/(1-r)))
|
parity\:=\tan(n\arctan(\frac{2\sqrt{r}}{1-r}))
|
critical points of f(x)=4x-x^2
|
critical\:points\:f(x)=4x-x^{2}
|
domain of f(x)=-3/(2x^{3/2)}
|
domain\:f(x)=-\frac{3}{2x^{\frac{3}{2}}}
|
range of 1/(x^2)-4
|
range\:\frac{1}{x^{2}}-4
|
frequency cos(2000pi t)
|
frequency\:\cos(2000\pi\:t)
|
inverse of f(x)=5^x-8
|
inverse\:f(x)=5^{x}-8
|
domain of f(x)=x^3+5x^2-1
|
domain\:f(x)=x^{3}+5x^{2}-1
|
critical points of f(x)=xsqrt(2x+1)
|
critical\:points\:f(x)=x\sqrt{2x+1}
|
inflection points of f(x)=-x^4-5x^3+6x-2
|
inflection\:points\:f(x)=-x^{4}-5x^{3}+6x-2
|
inverse of f(x)=6x^2
|
inverse\:f(x)=6x^{2}
|
domain of f(x)=ln(5x+2)
|
domain\:f(x)=\ln(5x+2)
|
parity f(x)=289
|
parity\:f(x)=289
|
inverse of y=-3x
|
inverse\:y=-3x
|
range of sqrt(5-8x)
|
range\:\sqrt{5-8x}
|
range of (4x-4)/(x+2)
|
range\:\frac{4x-4}{x+2}
|
range of f(x)=x+sqrt(x-1)
|
range\:f(x)=x+\sqrt{x-1}
|
domain of sqrt(x^2-81)
|
domain\:\sqrt{x^{2}-81}
|
critical points of (x^3)/3-x^2-3x
|
critical\:points\:\frac{x^{3}}{3}-x^{2}-3x
|
parity f(x)=-x^3+4x+9
|
parity\:f(x)=-x^{3}+4x+9
|
line (-2,2)(0,0)
|
line\:(-2,2)(0,0)
|
inverse of ((x-2))/(3x+7)
|
inverse\:\frac{(x-2)}{3x+7}
|
amplitude of 2sin(4x-pi)
|
amplitude\:2\sin(4x-\pi)
|
inverse of f(x)=(3x+4)/(2x+2)
|
inverse\:f(x)=\frac{3x+4}{2x+2}
|
midpoint (1,6)(-5,2)
|
midpoint\:(1,6)(-5,2)
|
domain of-2tan(theta+(pi)/4)-1
|
domain\:-2\tan(\theta+\frac{\pi}{4})-1
|
range of f(x)=2+sqrt(x+3)
|
range\:f(x)=2+\sqrt{x+3}
|
inverse of f(x)= 1/2 (3-3x)
|
inverse\:f(x)=\frac{1}{2}(3-3x)
|
inverse of f(x)= x/(32)
|
inverse\:f(x)=\frac{x}{32}
|
range of f(x)=e^{-x}-5
|
range\:f(x)=e^{-x}-5
|
domain of f(x)=(2x-1)/(x^3-4x)
|
domain\:f(x)=\frac{2x-1}{x^{3}-4x}
|
inverse of f(x)=6x-3
|
inverse\:f(x)=6x-3
|
range of f(x)=x^2-6x+3
|
range\:f(x)=x^{2}-6x+3
|
asymptotes of f(x)= 1/(1+x)
|
asymptotes\:f(x)=\frac{1}{1+x}
|
symmetry (x^2-25)/x
|
symmetry\:\frac{x^{2}-25}{x}
|
domain of f(x)=sqrt(8-x)
|
domain\:f(x)=\sqrt{8-x}
|
asymptotes of f(x)=(x^2+2x-8)/(2x+6)
|
asymptotes\:f(x)=\frac{x^{2}+2x-8}{2x+6}
|
domain of (sqrt(x^2-3x+2))/(2x^2-x)
|
domain\:\frac{\sqrt{x^{2}-3x+2}}{2x^{2}-x}
|
y=5x-2
|
y=5x-2
|
range of 5^x-4
|
range\:5^{x}-4
|
inverse of f(x)=2ln(x+4)-8
|
inverse\:f(x)=2\ln(x+4)-8
|
range of xsqrt(36-x^2)
|
range\:x\sqrt{36-x^{2}}
|
slope intercept of-4x-12y=24
|
slope\:intercept\:-4x-12y=24
|
inflection points of f(x)=(6x)/(1+x^2)
|
inflection\:points\:f(x)=\frac{6x}{1+x^{2}}
|
domain of f(x)=x^3-4x^2+5x-2
|
domain\:f(x)=x^{3}-4x^{2}+5x-2
|
extreme points of f(x)=(25x)/(x^2+25)
|
extreme\:points\:f(x)=\frac{25x}{x^{2}+25}
|
domain of f(x)=(x+3)/(3x-27)+1/(x^2-4)
|
domain\:f(x)=\frac{x+3}{3x-27}+\frac{1}{x^{2}-4}
|
domain of (sqrt(10-x))/(x^2-1)
|
domain\:\frac{\sqrt{10-x}}{x^{2}-1}
|
critical points of f(x)=-2x-10
|
critical\:points\:f(x)=-2x-10
|
parallel y=-3+5
|
parallel\:y=-3+5
|
asymptotes of sin(3x)
|
asymptotes\:\sin(3x)
|
inverse of f(x)=1+2x^5
|
inverse\:f(x)=1+2x^{5}
|