distance (-4.5,-1.5)(-3,1)
|
distance\:(-4.5,-1.5)(-3,1)
|
inverse of f(x)=16(3-x)^2-1
|
inverse\:f(x)=16(3-x)^{2}-1
|
domain of-x^2+9
|
domain\:-x^{2}+9
|
domain of y= 1/(x^2-9)
|
domain\:y=\frac{1}{x^{2}-9}
|
domain of e^{x-5}
|
domain\:e^{x-5}
|
midpoint (1,1)(3,5)
|
midpoint\:(1,1)(3,5)
|
inverse of f(x)=-1/3 x+7
|
inverse\:f(x)=-\frac{1}{3}x+7
|
inverse of f(x)=sqrt(6-e^x)
|
inverse\:f(x)=\sqrt{6-e^{x}}
|
monotone intervals f(x)=(x+2)(x-5)^2
|
monotone\:intervals\:f(x)=(x+2)(x-5)^{2}
|
parity f(x)= 1/(t^3-2)
|
parity\:f(x)=\frac{1}{t^{3}-2}
|
extreme points of f(x)=3x^4-20x^3+24x^2
|
extreme\:points\:f(x)=3x^{4}-20x^{3}+24x^{2}
|
slope of-8/5
|
slope\:-\frac{8}{5}
|
inverse of f(x)=[x-2]
|
inverse\:f(x)=[x-2]
|
domain of f(x)= 8/(8+e^x)
|
domain\:f(x)=\frac{8}{8+e^{x}}
|
midpoint (1,7)(-8,3)
|
midpoint\:(1,7)(-8,3)
|
domain of f(x)=(x+7)/(x-8)
|
domain\:f(x)=\frac{x+7}{x-8}
|
monotone intervals f(x)=(x+3)/(x^2)
|
monotone\:intervals\:f(x)=\frac{x+3}{x^{2}}
|
inverse of f(x)=-12x+5
|
inverse\:f(x)=-12x+5
|
extreme points of-2x^2-2x-2
|
extreme\:points\:-2x^{2}-2x-2
|
parity f(x)=x+e^x
|
parity\:f(x)=x+e^{x}
|
inverse of y=x^2-1
|
inverse\:y=x^{2}-1
|
asymptotes of f(x)=(2x^2-5x+3)/(x-1)
|
asymptotes\:f(x)=\frac{2x^{2}-5x+3}{x-1}
|
critical points of f(x)=(x-2)(x-5)^3+9
|
critical\:points\:f(x)=(x-2)(x-5)^{3}+9
|
domain of (5x-1)^2
|
domain\:(5x-1)^{2}
|
inverse of f(x)=-x-1
|
inverse\:f(x)=-x-1
|
asymptotes of f(x)=(x^2+3)/(x^2+9)
|
asymptotes\:f(x)=\frac{x^{2}+3}{x^{2}+9}
|
inverse of f(x)=((2x+a))/(x+7)
|
inverse\:f(x)=\frac{(2x+a)}{x+7}
|
inflection points of f(x)=7x^2-3
|
inflection\:points\:f(x)=7x^{2}-3
|
parity f(x)=\sqrt[3]{3x^2}
|
parity\:f(x)=\sqrt[3]{3x^{2}}
|
slope intercept of y=-1/2 x+4
|
slope\:intercept\:y=-\frac{1}{2}x+4
|
inverse of f(x)=(2x)/3-6
|
inverse\:f(x)=\frac{2x}{3}-6
|
intercepts of f(x)=-3x^2+2x+1
|
intercepts\:f(x)=-3x^{2}+2x+1
|
domain of f(x)=(sqrt(4-x^2))/(x-3)
|
domain\:f(x)=\frac{\sqrt{4-x^{2}}}{x-3}
|
inverse of f(x)= 1/2 x+4
|
inverse\:f(x)=\frac{1}{2}x+4
|
line 6x-3y=5
|
line\:6x-3y=5
|
domain of 2x^2-1
|
domain\:2x^{2}-1
|
slope intercept of 2y-x=-4
|
slope\:intercept\:2y-x=-4
|
domain of f(x)=sqrt(3x+4)
|
domain\:f(x)=\sqrt{3x+4}
|
inverse of f(x)=8x+7
|
inverse\:f(x)=8x+7
|
asymptotes of f(x)=(3x)/((x^2+8))
|
asymptotes\:f(x)=\frac{3x}{(x^{2}+8)}
|
shift sin(x-pi)
|
shift\:\sin(x-\pi)
|
range of f(x)=-e^{x-1}-1
|
range\:f(x)=-e^{x-1}-1
|
slope of 7x-8y=56
|
slope\:7x-8y=56
|
inverse of f(x)=sin(2x(pi)/4)<= x<= pi
|
inverse\:f(x)=\sin(2x\frac{\pi}{4})\le\:x\le\:\pi
|
domain of ln((x+1)/2)
|
domain\:\ln(\frac{x+1}{2})
|
monotone intervals f(x)=21x^2-x^3
|
monotone\:intervals\:f(x)=21x^{2}-x^{3}
|
midpoint (22,42)(1,22)
|
midpoint\:(22,42)(1,22)
|
inflection points of x^4-12x^3+48x^2-64x
|
inflection\:points\:x^{4}-12x^{3}+48x^{2}-64x
|
inverse of f(x)=x^2-4x+2
|
inverse\:f(x)=x^{2}-4x+2
|
inverse of 1/(ln(x))
|
inverse\:\frac{1}{\ln(x)}
|
inverse of f(x)= 1/2 x^3-2
|
inverse\:f(x)=\frac{1}{2}x^{3}-2
|
vertex f(x)=y=-6(x-4)^2-1
|
vertex\:f(x)=y=-6(x-4)^{2}-1
|
inflection points of f(x)=(x^2)/(x+2)
|
inflection\:points\:f(x)=\frac{x^{2}}{x+2}
|
domain of f(x)=(2/x)(x/(x+2))
|
domain\:f(x)=(\frac{2}{x})(\frac{x}{x+2})
|
inverse of 4x-3
|
inverse\:4x-3
|
slope intercept of 8y-4x=-56
|
slope\:intercept\:8y-4x=-56
|
symmetry x^3+10x
|
symmetry\:x^{3}+10x
|
monotone intervals-2x+7
|
monotone\:intervals\:-2x+7
|
intercepts of f(x)=(x^2-3x-10)/(x-5)
|
intercepts\:f(x)=\frac{x^{2}-3x-10}{x-5}
|
inverse of sqrt(2x-3)
|
inverse\:\sqrt{2x-3}
|
inverse of g(x)=x^2
|
inverse\:g(x)=x^{2}
|
inverse of f(x)=-1+2x^5
|
inverse\:f(x)=-1+2x^{5}
|
slope of (-6-5)(4,4)
|
slope\:(-6-5)(4,4)
|
inflection points of-x^2+5x-7
|
inflection\:points\:-x^{2}+5x-7
|
y=3x-2
|
y=3x-2
|
monotone intervals 1/(x^2)
|
monotone\:intervals\:\frac{1}{x^{2}}
|
slope intercept of 2x+y=2
|
slope\:intercept\:2x+y=2
|
domain of f(x)= 1/(sqrt(3-x))
|
domain\:f(x)=\frac{1}{\sqrt{3-x}}
|
inverse of f(x)=3(x-9)/2+20
|
inverse\:f(x)=3\frac{x-9}{2}+20
|
slope intercept of 2x+3y=-24
|
slope\:intercept\:2x+3y=-24
|
asymptotes of f(x)=(3-2x)/(2x+17)
|
asymptotes\:f(x)=\frac{3-2x}{2x+17}
|
asymptotes of f(x)= 1/(4x^2-8x-12)
|
asymptotes\:f(x)=\frac{1}{4x^{2}-8x-12}
|
asymptotes of f(x)=(ln(x))/(x+5)
|
asymptotes\:f(x)=\frac{\ln(x)}{x+5}
|
midpoint (-4,0)(3,2)
|
midpoint\:(-4,0)(3,2)
|
midpoint (-4,9)(1,2)
|
midpoint\:(-4,9)(1,2)
|
range of f(x)=3x+9
|
range\:f(x)=3x+9
|
domain of sqrt(x+9)-sqrt(x+8)
|
domain\:\sqrt{x+9}-\sqrt{x+8}
|
inverse of-2sin((x-pi)/2)
|
inverse\:-2\sin(\frac{x-\pi}{2})
|
domain of 8/(sqrt(x-1))
|
domain\:\frac{8}{\sqrt{x-1}}
|
range of 3/(x-2)
|
range\:\frac{3}{x-2}
|
distance (0,6)(2,3)
|
distance\:(0,6)(2,3)
|
asymptotes of f(x)=(x^2)/(2-x)
|
asymptotes\:f(x)=\frac{x^{2}}{2-x}
|
intercepts of f(x)=ln(x)+7
|
intercepts\:f(x)=\ln(x)+7
|
inverse of f(x)= 1/(x+15)
|
inverse\:f(x)=\frac{1}{x+15}
|
symmetry y=3x^2+3
|
symmetry\:y=3x^{2}+3
|
slope of y=-19
|
slope\:y=-19
|
intercepts of x^3-1
|
intercepts\:x^{3}-1
|
asymptotes of g(x)=(4x-3)/(2x+4)
|
asymptotes\:g(x)=\frac{4x-3}{2x+4}
|
extreme points of f(x)=x^2-2x-80
|
extreme\:points\:f(x)=x^{2}-2x-80
|
domain of f(x)=a^xa< 1
|
domain\:f(x)=a^{x}a\lt\:1
|
slope of 3(y-1)=0
|
slope\:3(y-1)=0
|
domain of (x-5)/(x+2)
|
domain\:\frac{x-5}{x+2}
|
inflection points of 2x^4+16x^3-11
|
inflection\:points\:2x^{4}+16x^{3}-11
|
slope of (3,-3)\land 3
|
slope\:(3,-3)\land\:3
|
inflection points of x-2ln(x)
|
inflection\:points\:x-2\ln(x)
|
distance (4,-3)(5,-7)
|
distance\:(4,-3)(5,-7)
|
asymptotes of (4x+9)/(3x-2)
|
asymptotes\:\frac{4x+9}{3x-2}
|
domain of f(x)=(x-6)/(x^2+3x-54)
|
domain\:f(x)=\frac{x-6}{x^{2}+3x-54}
|
line (sqrt(3),)(sqrt(5),)
|
line\:(\sqrt{3},)(\sqrt{5},)
|
inverse of f(x)=(x+6)^2+16
|
inverse\:f(x)=(x+6)^{2}+16
|