critical points of (x^2)/(x-1)
|
critical\:points\:\frac{x^{2}}{x-1}
|
critical points of f(x)=cos(2x)
|
critical\:points\:f(x)=\cos(2x)
|
range of f(x)=sqrt(x^2-5)
|
range\:f(x)=\sqrt{x^{2}-5}
|
domain of f(x)= 1/(sqrt(x+1))
|
domain\:f(x)=\frac{1}{\sqrt{x+1}}
|
inverse of y=-x+4
|
inverse\:y=-x+4
|
inverse of f(x)=x^2-x
|
inverse\:f(x)=x^{2}-x
|
asymptotes of f(x)=(2x^2-9)/(x^2-9)
|
asymptotes\:f(x)=\frac{2x^{2}-9}{x^{2}-9}
|
line (3,-7)(-10,-2)
|
line\:(3,-7)(-10,-2)
|
midpoint (-4,5)(-1,-4)
|
midpoint\:(-4,5)(-1,-4)
|
domain of f(x)=sqrt(196-x^2)
|
domain\:f(x)=\sqrt{196-x^{2}}
|
domain of f(x)= 9/(x+8)
|
domain\:f(x)=\frac{9}{x+8}
|
parallel y=8x-7,\at (4,-5)
|
parallel\:y=8x-7,\at\:(4,-5)
|
asymptotes of f(x)=(x^2-3x-10)/(x-2)
|
asymptotes\:f(x)=\frac{x^{2}-3x-10}{x-2}
|
monotone intervals f(x)= x/(x^2+15x+50)
|
monotone\:intervals\:f(x)=\frac{x}{x^{2}+15x+50}
|
inverse of y=log_{4}(x)
|
inverse\:y=\log_{4}(x)
|
inverse of \sqrt[3]{x-8}
|
inverse\:\sqrt[3]{x-8}
|
domain of f(x)= 4/(x+19)
|
domain\:f(x)=\frac{4}{x+19}
|
domain of sqrt(9+x^2)
|
domain\:\sqrt{9+x^{2}}
|
domain of f(x)=(x+1)/(x^2-6x+8)
|
domain\:f(x)=\frac{x+1}{x^{2}-6x+8}
|
inverse of x^2-3
|
inverse\:x^{2}-3
|
periodicity of f(x)=2+4sin(3x+(pi)/2)
|
periodicity\:f(x)=2+4\sin(3x+\frac{\pi}{2})
|
slope intercept of 3x-5+7
|
slope\:intercept\:3x-5+7
|
intercepts of (x^3-2x^2-3x)/(x-3)
|
intercepts\:\frac{x^{3}-2x^{2}-3x}{x-3}
|
slope of 3y+4x=12
|
slope\:3y+4x=12
|
intercepts of f(x)=-4x+6y=21
|
intercepts\:f(x)=-4x+6y=21
|
slope of =0
|
slope\:=0
|
domain of (x-1)^2
|
domain\:(x-1)^{2}
|
inflection points of f(x)=x^2e^{-x}
|
inflection\:points\:f(x)=x^{2}e^{-x}
|
inverse of f(x)= 6/(5-x)
|
inverse\:f(x)=\frac{6}{5-x}
|
f(x)=x^2+2x-3
|
f(x)=x^{2}+2x-3
|
extreme points of s^3
|
extreme\:points\:s^{3}
|
critical points of f(x)=3x^4-4x^3+1
|
critical\:points\:f(x)=3x^{4}-4x^{3}+1
|
asymptotes of f(x)=(-7x^2+1)/(x^2+x+6)
|
asymptotes\:f(x)=\frac{-7x^{2}+1}{x^{2}+x+6}
|
domain of (1/(sqrt(x)))^2-8(1/(sqrt(x)))
|
domain\:(\frac{1}{\sqrt{x}})^{2}-8(\frac{1}{\sqrt{x}})
|
periodicity of f(x)=cos(1/2 x)
|
periodicity\:f(x)=\cos(\frac{1}{2}x)
|
intercepts of sqrt(4x-16)
|
intercepts\:\sqrt{4x-16}
|
domain of f(x)=(sqrt(1+x))/(6-x)
|
domain\:f(x)=\frac{\sqrt{1+x}}{6-x}
|
domain of f(x)=arcsin(x/2)
|
domain\:f(x)=\arcsin(\frac{x}{2})
|
domain of (1/3)^x
|
domain\:(\frac{1}{3})^{x}
|
extreme points of f(x)=-x^4+8x^2-8
|
extreme\:points\:f(x)=-x^{4}+8x^{2}-8
|
perpendicular 5x+4y=8(10,5)
|
perpendicular\:5x+4y=8(10,5)
|
domain of f(x)= 2/(\frac{x){x+2}}
|
domain\:f(x)=\frac{2}{\frac{x}{x+2}}
|
domain of (5x)/(x^2-9)
|
domain\:\frac{5x}{x^{2}-9}
|
domain of f(x)=((x-4)sqrt(x+2))/(x^2)
|
domain\:f(x)=\frac{(x-4)\sqrt{x+2}}{x^{2}}
|
asymptotes of f(x)=(x^3)/((x-1)^2)
|
asymptotes\:f(x)=\frac{x^{3}}{(x-1)^{2}}
|
1/(1-x)
|
\frac{1}{1-x}
|
intercepts of 2x^2+3
|
intercepts\:2x^{2}+3
|
extreme points of f(x)=xe^x
|
extreme\:points\:f(x)=xe^{x}
|
perpendicular 2x+3y=5,\at (8,8)
|
perpendicular\:2x+3y=5,\at\:(8,8)
|
intercepts of y=x+3
|
intercepts\:y=x+3
|
slope intercept of 3g-17k=54
|
slope\:intercept\:3g-17k=54
|
shift f(x)=2cos(x)+1
|
shift\:f(x)=2\cos(x)+1
|
line (0,3)(2,0)
|
line\:(0,3)(2,0)
|
inverse of f(x)=e^x+3
|
inverse\:f(x)=e^{x}+3
|
line (50,42),(40,5)
|
line\:(50,42),(40,5)
|
inverse of y=sqrt(x^2+2)
|
inverse\:y=\sqrt{x^{2}+2}
|
inverse of f(x)=(3x-4)/(x-2)
|
inverse\:f(x)=\frac{3x-4}{x-2}
|
domain of 3^x-2
|
domain\:3^{x}-2
|
inverse of f(x)= 4/3 x+4
|
inverse\:f(x)=\frac{4}{3}x+4
|
inverse of f(x)=12*(x+9)/2
|
inverse\:f(x)=12\cdot\:\frac{x+9}{2}
|
f(x)=3^x
|
f(x)=3^{x}
|
asymptotes of (2x-9)/(-4x+1)
|
asymptotes\:\frac{2x-9}{-4x+1}
|
domain of-3(x+6)^2+2
|
domain\:-3(x+6)^{2}+2
|
domain of f(x)= 1/(3^x)
|
domain\:f(x)=\frac{1}{3^{x}}
|
inverse of f(x)=2(x-3)^2+6
|
inverse\:f(x)=2(x-3)^{2}+6
|
line (0,-2)(3,-3)
|
line\:(0,-2)(3,-3)
|
perpendicular 2x+5y+2=0
|
perpendicular\:2x+5y+2=0
|
domain of f(x)=(2x-1)/(x^2-6x+5)
|
domain\:f(x)=\frac{2x-1}{x^{2}-6x+5}
|
inverse of f(x)=log_{3}(x+3)
|
inverse\:f(x)=\log_{3}(x+3)
|
domain of x/(2x-sqrt(x^2-2x))
|
domain\:\frac{x}{2x-\sqrt{x^{2}-2x}}
|
inverse of (1)
|
inverse\:(1)
|
range of (5x^2+5)/(x^2+4x+4)
|
range\:\frac{5x^{2}+5}{x^{2}+4x+4}
|
inverse of f(x)=log_{2}(8x)
|
inverse\:f(x)=\log_{2}(8x)
|
asymptotes of f(x)=(2x+5)/(x-3)
|
asymptotes\:f(x)=\frac{2x+5}{x-3}
|
inverse of f(x)=(-6-\sqrt[3]{4x})/2
|
inverse\:f(x)=\frac{-6-\sqrt[3]{4x}}{2}
|
parallel y=-5/6 x-5,\at (-8,9)
|
parallel\:y=-\frac{5}{6}x-5,\at\:(-8,9)
|
domain of f(x)=(5/x)/(5/x+5)
|
domain\:f(x)=\frac{\frac{5}{x}}{\frac{5}{x}+5}
|
line (3,8)(0,2)
|
line\:(3,8)(0,2)
|
monotone intervals x^4e^{-x/2}
|
monotone\:intervals\:x^{4}e^{-\frac{x}{2}}
|
domain of 3/(sqrt(x))
|
domain\:\frac{3}{\sqrt{x}}
|
domain of f(x)=sqrt(6+6x)
|
domain\:f(x)=\sqrt{6+6x}
|
domain of f(x)= 1/(5x+6)
|
domain\:f(x)=\frac{1}{5x+6}
|
domain of sqrt(x-3)+2
|
domain\:\sqrt{x-3}+2
|
inverse of (2x-1)/(x+1)
|
inverse\:\frac{2x-1}{x+1}
|
slope of 2x-y=-4
|
slope\:2x-y=-4
|
intercepts of f(x)=(x^3-x)/(x^2-4)
|
intercepts\:f(x)=\frac{x^{3}-x}{x^{2}-4}
|
domain of f(x)= 5/(x+4)
|
domain\:f(x)=\frac{5}{x+4}
|
asymptotes of f(x)= x/(x(x-1))
|
asymptotes\:f(x)=\frac{x}{x(x-1)}
|
inverse of f(x)=7^{-x}
|
inverse\:f(x)=7^{-x}
|
domain of ((x^2+16))/(3x^3-27)
|
domain\:\frac{(x^{2}+16)}{3x^{3}-27}
|
midpoint (2,3)(8,9)
|
midpoint\:(2,3)(8,9)
|
asymptotes of f(x)=(x^2+4x-5)/(x-5)
|
asymptotes\:f(x)=\frac{x^{2}+4x-5}{x-5}
|
line (-5,3)(0,-1)
|
line\:(-5,3)(0,-1)
|
inverse of f(x)=3\sqrt[3]{x}-2
|
inverse\:f(x)=3\sqrt[3]{x}-2
|
domain of y=2-sqrt(x+1)
|
domain\:y=2-\sqrt{x+1}
|
extreme points of-1/2 (x+1)^2-3
|
extreme\:points\:-\frac{1}{2}(x+1)^{2}-3
|
inverse of f(x)=ln(x-1)-ln(x)
|
inverse\:f(x)=\ln(x-1)-\ln(x)
|
extreme points of 12x^2-x^3
|
extreme\:points\:12x^{2}-x^{3}
|
range of y=sqrt(x)-5
|
range\:y=\sqrt{x}-5
|
inverse of (x+7)^3
|
inverse\:(x+7)^{3}
|