inverse e^{4sqrt(x)}
|
inverse\:e^{4\sqrt{x}}
|
domain f(x)=(x^2)/2
|
domain\:f(x)=\frac{x^{2}}{2}
|
inverse f(x)=0.5x
|
inverse\:f(x)=0.5x
|
inverse cos(6x)
|
inverse\:\cos(6x)
|
domain f(x)=((x^2-1))/(2x-3)
|
domain\:f(x)=\frac{(x^{2}-1)}{2x-3}
|
asymptotes f(x)=(x^2+3x)/(x^2-x)
|
asymptotes\:f(x)=\frac{x^{2}+3x}{x^{2}-x}
|
inverse f(x)=-sqrt(-(10x-458)/(49))-3
|
inverse\:f(x)=-\sqrt{-\frac{10x-458}{49}}-3
|
critical points f(x)=xe^{-2x}
|
critical\:points\:f(x)=xe^{-2x}
|
critical points (1+x)/(1+x^2)
|
critical\:points\:\frac{1+x}{1+x^{2}}
|
inverse f(x)=-x-7
|
inverse\:f(x)=-x-7
|
intercepts f(x)=(x-2)^2+1
|
intercepts\:f(x)=(x-2)^{2}+1
|
critical points f(x)=ln(x-3)
|
critical\:points\:f(x)=\ln(x-3)
|
periodicity 3sec(8x-32)
|
periodicity\:3\sec(8x-32)
|
slope 4y=-3x+7
|
slope\:4y=-3x+7
|
inverse (x^2-4)/(8x^2)
|
inverse\:\frac{x^{2}-4}{8x^{2}}
|
inflection points f(x)= 1/2 x^4+2x^3
|
inflection\:points\:f(x)=\frac{1}{2}x^{4}+2x^{3}
|
shift 2cos(3x-pi)
|
shift\:2\cos(3x-\pi)
|
parity y=(\theta+3)/(\thetacos(\theta))
|
parity\:y=\frac{\theta+3}{\theta\cos(\theta)}
|
inverse f(x)=2(x-3)^3
|
inverse\:f(x)=2(x-3)^{3}
|
inverse f(x)=(x-9)/(x-2)
|
inverse\:f(x)=\frac{x-9}{x-2}
|
critical points f(x)= 6/(1-x^2)
|
critical\:points\:f(x)=\frac{6}{1-x^{2}}
|
intercepts f(x)=(x-3)^2-9
|
intercepts\:f(x)=(x-3)^{2}-9
|
range-x^2+4x-4
|
range\:-x^{2}+4x-4
|
range x+1
|
range\:x+1
|
periodicity f(x)=1-3sin(2x-9)
|
periodicity\:f(x)=1-3\sin(2x-9)
|
domain f(x)=sin(e^t-1)
|
domain\:f(x)=\sin(e^{t}-1)
|
range f(x)=log_{5}(-x)
|
range\:f(x)=\log_{5}(-x)
|
critical points 3x-x^3
|
critical\:points\:3x-x^{3}
|
domain f(x)=-4x+9
|
domain\:f(x)=-4x+9
|
intercepts f(x)=x^3+5x^2-4x-20
|
intercepts\:f(x)=x^{3}+5x^{2}-4x-20
|
asymptotes f(x)=(10x^2-8x)/(15x^2+102x-21)
|
asymptotes\:f(x)=\frac{10x^{2}-8x}{15x^{2}+102x-21}
|
line (2,4)(6,5)
|
line\:(2,4)(6,5)
|
perpendicular 15x+9y+13=0
|
perpendicular\:15x+9y+13=0
|
intercepts f(x)=3x-y=9
|
intercepts\:f(x)=3x-y=9
|
range f(x)=2-x^2
|
range\:f(x)=2-x^{2}
|
domain f(x)=\sqrt[3]{|x|+1/x}
|
domain\:f(x)=\sqrt[3]{|x|+\frac{1}{x}}
|
critical points x-7x^{1/7}
|
critical\:points\:x-7x^{\frac{1}{7}}
|
monotone intervals 1/2 4^x
|
monotone\:intervals\:\frac{1}{2}4^{x}
|
asymptotes ((x-4))/((x+5))
|
asymptotes\:\frac{(x-4)}{(x+5)}
|
line (-5,2)(0,0)
|
line\:(-5,2)(0,0)
|
parallel 2/3
|
parallel\:\frac{2}{3}
|
symmetry (3x)/(x-2)
|
symmetry\:\frac{3x}{x-2}
|
line (3,)(2,)
|
line\:(3,)(2,)
|
domain (3x)/(x^2-16)
|
domain\:\frac{3x}{x^{2}-16}
|
intercepts f(x)=-x+3y=-2
|
intercepts\:f(x)=-x+3y=-2
|
critical points f(x)=sin(2\theta)
|
critical\:points\:f(x)=\sin(2\theta)
|
asymptotes f(x)=(6x+4)/(2x-1)
|
asymptotes\:f(x)=\frac{6x+4}{2x-1}
|
slope x=-3
|
slope\:x=-3
|
inverse f(x)=(4x+7)/(3x-4)
|
inverse\:f(x)=\frac{4x+7}{3x-4}
|
inverse f(x)=4\div (x-3)
|
inverse\:f(x)=4\div\:(x-3)
|
domain h(x)=ln(x)+ln(9-x)
|
domain\:h(x)=\ln(x)+\ln(9-x)
|
extreme points f(x)=x^4-8x^2+4
|
extreme\:points\:f(x)=x^{4}-8x^{2}+4
|
slope intercept 5x-10y=20
|
slope\:intercept\:5x-10y=20
|
domain f(x)=7x-5
|
domain\:f(x)=7x-5
|
inverse f(x)=arcsin(ln(x))
|
inverse\:f(x)=\arcsin(\ln(x))
|
asymptotes f(x)=(x+1)/(x-5)
|
asymptotes\:f(x)=\frac{x+1}{x-5}
|
domain log_{10}(x^2-1)
|
domain\:\log_{10}(x^{2}-1)
|
extreme points y=x^3+12x^2+48x-1
|
extreme\:points\:y=x^{3}+12x^{2}+48x-1
|
inverse f(x)= x/(8x+7)
|
inverse\:f(x)=\frac{x}{8x+7}
|
line y=4x-9
|
line\:y=4x-9
|
symmetry x^2+16x+8
|
symmetry\:x^{2}+16x+8
|
inflection points y=(x^2-7)/(x-4)
|
inflection\:points\:y=\frac{x^{2}-7}{x-4}
|
asymptotes f(x)=(2e^{2x}+3e^x+1)/(e^{2x)-3e^x+2}
|
asymptotes\:f(x)=\frac{2e^{2x}+3e^{x}+1}{e^{2x}-3e^{x}+2}
|
inverse 5sin(x)+7
|
inverse\:5\sin(x)+7
|
inverse f(x)=(6x+7)/(x+6)
|
inverse\:f(x)=\frac{6x+7}{x+6}
|
perpendicular y=-0.3x+4.6,\at (-7,0)
|
perpendicular\:y=-0.3x+4.6,\at\:(-7,0)
|
amplitude f(x)=-4-5cos(2x-pi)
|
amplitude\:f(x)=-4-5\cos(2x-\pi)
|
domain f(x)=(x+9)/(x^2-9)
|
domain\:f(x)=\frac{x+9}{x^{2}-9}
|
asymptotes f(x)=-(4)^{x+3}
|
asymptotes\:f(x)=-(4)^{x+3}
|
inverse f(x)=(x+1)^2
|
inverse\:f(x)=(x+1)^{2}
|
range-x^2+6x-5
|
range\:-x^{2}+6x-5
|
symmetry-x^2+4x-7
|
symmetry\:-x^{2}+4x-7
|
domain f(x)=((x^2+3))/(x(5x-1))
|
domain\:f(x)=\frac{(x^{2}+3)}{x(5x-1)}
|
periodicity (-3tan(3pi x))
|
periodicity\:(-3\tan(3\pi\:x))
|
domain f(x)=-sqrt(1+x)
|
domain\:f(x)=-\sqrt{1+x}
|
extreme points f(x,y)=x^2+2y^2x^2+y^2=1
|
extreme\:points\:f(x,y)=x^{2}+2y^{2}x^{2}+y^{2}=1
|
asymptotes f(x)=(2x+7)/(3x-7)
|
asymptotes\:f(x)=\frac{2x+7}{3x-7}
|
inverse f(x)=2x-9
|
inverse\:f(x)=2x-9
|
domain f(x)=(7x+3)/x
|
domain\:f(x)=\frac{7x+3}{x}
|
slope intercept-2x+2y=-4
|
slope\:intercept\:-2x+2y=-4
|
extreme points (3x)/(x^2-4)
|
extreme\:points\:\frac{3x}{x^{2}-4}
|
monotone intervals-3*2^{x-5}+5
|
monotone\:intervals\:-3\cdot\:2^{x-5}+5
|
range 2^{x+1}
|
range\:2^{x+1}
|
asymptotes f(x)=-(1/3)^x
|
asymptotes\:f(x)=-(\frac{1}{3})^{x}
|
range f(x)=sqrt(1/x+1)
|
range\:f(x)=\sqrt{\frac{1}{x}+1}
|
range (-x^2+x+12)/(x^2+4x-32)
|
range\:\frac{-x^{2}+x+12}{x^{2}+4x-32}
|
domain f(x)=(x+2)/((x+4)^2)
|
domain\:f(x)=\frac{x+2}{(x+4)^{2}}
|
critical points f(x)=x^3-75x
|
critical\:points\:f(x)=x^{3}-75x
|
slope (-2,-6)0
|
slope\:(-2,-6)0
|
slope 3x-y=7
|
slope\:3x-y=7
|
domain f(x)=sqrt((x-3)(x+6))
|
domain\:f(x)=\sqrt{(x-3)(x+6)}
|
extreme points f(x)=((sqrt(3x+4)))/((x+2))
|
extreme\:points\:f(x)=\frac{(\sqrt{3x+4})}{(x+2)}
|
parity sec(x)-csc(x)
|
parity\:\sec(x)-\csc(x)
|
domain f(x)=sqrt((x+5)/2)
|
domain\:f(x)=\sqrt{\frac{x+5}{2}}
|
inflection points (x^2-4)^4
|
inflection\:points\:(x^{2}-4)^{4}
|
inverse f(x)=sqrt(4x)
|
inverse\:f(x)=\sqrt{4x}
|
intercepts x^2-x-30
|
intercepts\:x^{2}-x-30
|
range 2/3 (x-2)^2-5
|
range\:\frac{2}{3}(x-2)^{2}-5
|
domain f(x)=(-3x^2+8x)/(3x+4)
|
domain\:f(x)=\frac{-3x^{2}+8x}{3x+4}
|
asymptotes 15x^{2/3}-10x
|
asymptotes\:15x^{\frac{2}{3}}-10x
|