domain of sqrt(6x+30)
|
domain\:\sqrt{6x+30}
|
domain of f(x)=x-4= 3/(y+1)
|
domain\:f(x)=x-4=\frac{3}{y+1}
|
range of-x^2-2x-5
|
range\:-x^{2}-2x-5
|
domain of-x^2-4x+5
|
domain\:-x^{2}-4x+5
|
range of sqrt(-x-1)
|
range\:\sqrt{-x-1}
|
domain of f(x)=(2x)/(x^2+2x+1)
|
domain\:f(x)=\frac{2x}{x^{2}+2x+1}
|
symmetry (x-1)^2-4
|
symmetry\:(x-1)^{2}-4
|
domain of f(x)=(x^2+1)/(x+1)
|
domain\:f(x)=\frac{x^{2}+1}{x+1}
|
inverse of f(x)=(3x-1)/(2x+8)
|
inverse\:f(x)=\frac{3x-1}{2x+8}
|
extreme points of f(x)=5x^2-1
|
extreme\:points\:f(x)=5x^{2}-1
|
extreme points of 1/(x^2+2x+2),[-2,2]
|
extreme\:points\:\frac{1}{x^{2}+2x+2},[-2,2]
|
slope of 3x-10y=20
|
slope\:3x-10y=20
|
midpoint (-1,4)(4,-2)
|
midpoint\:(-1,4)(4,-2)
|
domain of f(x)=x^3+1x< 3
|
domain\:f(x)=x^{3}+1x\lt\:3
|
f(x)=x^2+x
|
f(x)=x^{2}+x
|
parity y(x)=sin(sqrt(cos(tan(pi x))))
|
parity\:y(x)=\sin(\sqrt{\cos(\tan(\pi\:x))})
|
distance (-4,5)(7,18)
|
distance\:(-4,5)(7,18)
|
critical points of 6x^3+45x^2-108x+6
|
critical\:points\:6x^{3}+45x^{2}-108x+6
|
extreme points of f(x)=(x-4)^2
|
extreme\:points\:f(x)=(x-4)^{2}
|
symmetry x^2+y^2+6x-2y-15=0
|
symmetry\:x^{2}+y^{2}+6x-2y-15=0
|
domain of f(x)=sqrt(12+3x)
|
domain\:f(x)=\sqrt{12+3x}
|
midpoint (d,n)(0,0)
|
midpoint\:(d,n)(0,0)
|
midpoint (12,3)(-9,10)
|
midpoint\:(12,3)(-9,10)
|
range of f(x)=-3^x-1
|
range\:f(x)=-3^{x}-1
|
asymptotes of f(x)=(2x)/(sqrt(x^2+2))
|
asymptotes\:f(x)=\frac{2x}{\sqrt{x^{2}+2}}
|
distance (-5,-4)(-6,4)
|
distance\:(-5,-4)(-6,4)
|
inflection points of (2+x-x^2)/((x-1)^2)
|
inflection\:points\:\frac{2+x-x^{2}}{(x-1)^{2}}
|
asymptotes of f(x)=(3x)/(x^2-4)
|
asymptotes\:f(x)=\frac{3x}{x^{2}-4}
|
frequency 2cos(2x)-1
|
frequency\:2\cos(2x)-1
|
distance (-8,1)(-5,6)
|
distance\:(-8,1)(-5,6)
|
range of f(x)=3(1/2)^x
|
range\:f(x)=3(\frac{1}{2})^{x}
|
intercepts of f(x)=x^2+4x+2
|
intercepts\:f(x)=x^{2}+4x+2
|
slope of y-7=0
|
slope\:y-7=0
|
asymptotes of 1/((x-3)^2)
|
asymptotes\:\frac{1}{(x-3)^{2}}
|
asymptotes of 1/7 cot(pi x)
|
asymptotes\:\frac{1}{7}\cot(\pi\:x)
|
line (-5,-8),(5,2)
|
line\:(-5,-8),(5,2)
|
line (-2,-8),(3,2)
|
line\:(-2,-8),(3,2)
|
critical points of 2x^3-18x^2+48x+220
|
critical\:points\:2x^{3}-18x^{2}+48x+220
|
range of f(x)=sqrt(2-x)
|
range\:f(x)=\sqrt{2-x}
|
domain of e^t-t
|
domain\:e^{t}-t
|
domain of 5x^2+31x-28
|
domain\:5x^{2}+31x-28
|
domain of x/(1+x)
|
domain\:\frac{x}{1+x}
|
range of x+5
|
range\:x+5
|
inverse of (x-3)^2+1
|
inverse\:(x-3)^{2}+1
|
inverse of f(x)=y=7x^2-3
|
inverse\:f(x)=y=7x^{2}-3
|
vertex f(x)=y=2(x+1)^2-8
|
vertex\:f(x)=y=2(x+1)^{2}-8
|
monotone intervals sqrt(25-x^2)
|
monotone\:intervals\:\sqrt{25-x^{2}}
|
parity f(x)=sin(x)+cos(x)
|
parity\:f(x)=\sin(x)+\cos(x)
|
critical points of f(x)=x^4-32x^2+256
|
critical\:points\:f(x)=x^{4}-32x^{2}+256
|
inverse of f(x)=7x^3-2
|
inverse\:f(x)=7x^{3}-2
|
domain of 5/(2sqrt(5x+6))
|
domain\:\frac{5}{2\sqrt{5x+6}}
|
intercepts of f(x)=4x^2-4x+21
|
intercepts\:f(x)=4x^{2}-4x+21
|
critical points of f(x)=-16t^2+60t+2
|
critical\:points\:f(x)=-16t^{2}+60t+2
|
domain of f(x)=x^4+2x^3+2x^2+x
|
domain\:f(x)=x^{4}+2x^{3}+2x^{2}+x
|
monotone intervals f(x)= 2/(x+5)
|
monotone\:intervals\:f(x)=\frac{2}{x+5}
|
midpoint (2,4)(4,4)
|
midpoint\:(2,4)(4,4)
|
inflection points of (x^3)/(x^3+1)
|
inflection\:points\:\frac{x^{3}}{x^{3}+1}
|
domain of e^{-x}-2
|
domain\:e^{-x}-2
|
intercepts of (-12x-40)/(9x+6)
|
intercepts\:\frac{-12x-40}{9x+6}
|
midpoint (-44,-21)(43,-32)
|
midpoint\:(-44,-21)(43,-32)
|
domain of f(x)=5x^2+7x-11
|
domain\:f(x)=5x^{2}+7x-11
|
domain of log_{3}(x^2-4x+3)
|
domain\:\log_{3}(x^{2}-4x+3)
|
perpendicular y= 3/2 x-4(4,-2)
|
perpendicular\:y=\frac{3}{2}x-4(4,-2)
|
parallel x=-5(1,4)
|
parallel\:x=-5(1,4)
|
asymptotes of 1/((x+2)(x-3))
|
asymptotes\:\frac{1}{(x+2)(x-3)}
|
y=2x^2
|
y=2x^{2}
|
monotone intervals f(x)=x^2+2
|
monotone\:intervals\:f(x)=x^{2}+2
|
intercepts of log_{4}(-2x+8)
|
intercepts\:\log_{4}(-2x+8)
|
inverse of f(x)=(x-1)^2,x<= 1
|
inverse\:f(x)=(x-1)^{2},x\le\:1
|
asymptotes of f(x)=(3x+3)/(x^2+x)
|
asymptotes\:f(x)=\frac{3x+3}{x^{2}+x}
|
inverse of 8x^3
|
inverse\:8x^{3}
|
inverse of f(x)=-5/3 x+5
|
inverse\:f(x)=-\frac{5}{3}x+5
|
intercepts of x^3+2x^2+9x+18
|
intercepts\:x^{3}+2x^{2}+9x+18
|
amplitude of f(x)=-3cos(x)
|
amplitude\:f(x)=-3\cos(x)
|
monotone intervals f(x)=(e^x)/(x^2)
|
monotone\:intervals\:f(x)=\frac{e^{x}}{x^{2}}
|
critical points of 0.1X^5-4X^3+150X+100
|
critical\:points\:0.1X^{5}-4X^{3}+150X+100
|
extreme points of y=8x-ln(8x)
|
extreme\:points\:y=8x-\ln(8x)
|
domain of 9/(x^2+2x)
|
domain\:\frac{9}{x^{2}+2x}
|
extreme points of f(x)=2x^3+6x^2-18x
|
extreme\:points\:f(x)=2x^{3}+6x^{2}-18x
|
parity cos(x^2)+5cot(x)
|
parity\:\cos(x^{2})+5\cot(x)
|
intercepts of f(x)=(6x^2)/(x^2-4)
|
intercepts\:f(x)=\frac{6x^{2}}{x^{2}-4}
|
asymptotes of f(x)=x-2
|
asymptotes\:f(x)=x-2
|
domain of f(x)=(x-3)/(x^2-4x-12)
|
domain\:f(x)=\frac{x-3}{x^{2}-4x-12}
|
symmetry x^2-4x+3
|
symmetry\:x^{2}-4x+3
|
asymptotes of f(x)= 5/(2x+3)
|
asymptotes\:f(x)=\frac{5}{2x+3}
|
slope intercept of-5
|
slope\:intercept\:-5
|
intercepts of f(x)=3x+2y=-6
|
intercepts\:f(x)=3x+2y=-6
|
domain of 5
|
domain\:5
|
domain of y=tan((pi)/(10)x)
|
domain\:y=\tan(\frac{\pi}{10}x)
|
asymptotes of f(x)=(9x^2+7x)/(x^4-1)
|
asymptotes\:f(x)=\frac{9x^{2}+7x}{x^{4}-1}
|
domain of f(x)=-3/(sqrt(2-4x))
|
domain\:f(x)=-\frac{3}{\sqrt{2-4x}}
|
intercepts of f(x)=y=4x+7y=4x+7
|
intercepts\:f(x)=y=4x+7y=4x+7
|
domain of f(x)=sqrt(4+x^2)
|
domain\:f(x)=\sqrt{4+x^{2}}
|
intercepts of f(x)=3x^4-4x^3-12x^2
|
intercepts\:f(x)=3x^{4}-4x^{3}-12x^{2}
|
line m=-10,\at (0,0)
|
line\:m=-10,\at\:(0,0)
|
midpoint (-1,5)(9,-1)
|
midpoint\:(-1,5)(9,-1)
|
asymptotes of f(x)=((x^2-2x))/(x^2-4)
|
asymptotes\:f(x)=\frac{(x^{2}-2x)}{x^{2}-4}
|
range of (20)/(10+e^x)
|
range\:\frac{20}{10+e^{x}}
|
intercepts of f(x)=4x^2+8x+3
|
intercepts\:f(x)=4x^{2}+8x+3
|
inverse of f(x)=5x^3-3
|
inverse\:f(x)=5x^{3}-3
|