symmetry Y=2X^2-3
|
symmetry\:Y=2X^{2}-3
|
inflection points of (2x-3)^2
|
inflection\:points\:(2x-3)^{2}
|
critical points of f(x)=xsqrt(7-x)
|
critical\:points\:f(x)=x\sqrt{7-x}
|
inverse of f(x)=3(x+1)^2+1
|
inverse\:f(x)=3(x+1)^{2}+1
|
inverse of (sqrt(x)-3)/7+10
|
inverse\:\frac{\sqrt{x}-3}{7}+10
|
domain of =(1/(sqrt(x)))^2-4
|
domain\:=(\frac{1}{\sqrt{x}})^{2}-4
|
domain of f(x)=(sqrt(9-x^2))/(sqrt(x+1))
|
domain\:f(x)=\frac{\sqrt{9-x^{2}}}{\sqrt{x+1}}
|
inverse of f(x)=(3x+4)/(2x-3)
|
inverse\:f(x)=\frac{3x+4}{2x-3}
|
asymptotes of f(x)=(x^2-16)/(x+4)
|
asymptotes\:f(x)=\frac{x^{2}-16}{x+4}
|
shift 2cos(x)
|
shift\:2\cos(x)
|
range of f(x)=x-1
|
range\:f(x)=x-1
|
domain of 1/(sqrt(x^4-10x^2+9))
|
domain\:\frac{1}{\sqrt{x^{4}-10x^{2}+9}}
|
domain of (sqrt(x))/(4x^2+3x-1)
|
domain\:\frac{\sqrt{x}}{4x^{2}+3x-1}
|
perpendicular y=-0.75x(8,0)
|
perpendicular\:y=-0.75x(8,0)
|
inverse of f(x)=e^{(3-x)}+7
|
inverse\:f(x)=e^{(3-x)}+7
|
range of (x^2)/(1-x^2)
|
range\:\frac{x^{2}}{1-x^{2}}
|
intercepts of f(x)=sqrt(-5x)
|
intercepts\:f(x)=\sqrt{-5x}
|
asymptotes of f(x)=(5x-20)/(x^2-4x)
|
asymptotes\:f(x)=\frac{5x-20}{x^{2}-4x}
|
vertex f(x)=y=x^2-2x+10
|
vertex\:f(x)=y=x^{2}-2x+10
|
slope intercept of 3x-2y=14
|
slope\:intercept\:3x-2y=14
|
asymptotes of f(x)=(x^2-1)/(x-2)
|
asymptotes\:f(x)=\frac{x^{2}-1}{x-2}
|
domain of 2/(x^2+1)
|
domain\:\frac{2}{x^{2}+1}
|
inverse of f(x)=x^2+11x
|
inverse\:f(x)=x^{2}+11x
|
inverse of f(x)= 1/3 x-1
|
inverse\:f(x)=\frac{1}{3}x-1
|
inflection points of f(x)=x(x^2-4)
|
inflection\:points\:f(x)=x(x^{2}-4)
|
critical points of y=2+9x+3x^2-x^3
|
critical\:points\:y=2+9x+3x^{2}-x^{3}
|
f(x)=sin(2x)
|
f(x)=\sin(2x)
|
inverse of 3sqrt(9(x-1))
|
inverse\:3\sqrt{9(x-1)}
|
range of (3x-4)/(x+2)
|
range\:\frac{3x-4}{x+2}
|
parallel 3x-4y=2,\at (1/3 ,-1)
|
parallel\:3x-4y=2,\at\:(\frac{1}{3},-1)
|
domain of sin(e-t)
|
domain\:\sin(e-t)
|
inverse of f(x)= 4/(x-4)
|
inverse\:f(x)=\frac{4}{x-4}
|
asymptotes of f(x)=(x+2)e^{1/x}
|
asymptotes\:f(x)=(x+2)e^{\frac{1}{x}}
|
domain of 1/(x^2+3)
|
domain\:\frac{1}{x^{2}+3}
|
inverse of y=10^{x/5}
|
inverse\:y=10^{\frac{x}{5}}
|
domain of 1/(3x+9)
|
domain\:\frac{1}{3x+9}
|
critical points of f(x)=x^3+3x^2-144x
|
critical\:points\:f(x)=x^{3}+3x^{2}-144x
|
midpoint (1,-19)(1,9)
|
midpoint\:(1,-19)(1,9)
|
domain of =(x-2)/(2x^2)
|
domain\:=\frac{x-2}{2x^{2}}
|
domain of (2(x+6))/(3x)
|
domain\:\frac{2(x+6)}{3x}
|
midpoint (-1,10)(-4,0)
|
midpoint\:(-1,10)(-4,0)
|
slope intercept of-2x+3y=-6
|
slope\:intercept\:-2x+3y=-6
|
domain of f(x)=sqrt(169-x^2)
|
domain\:f(x)=\sqrt{169-x^{2}}
|
line y=-2
|
line\:y=-2
|
slope of 5x+2y=9
|
slope\:5x+2y=9
|
domain of f(x)=arcsin((x+2)/(5-x))
|
domain\:f(x)=\arcsin(\frac{x+2}{5-x})
|
inverse of f(x)=1650((1.022))^t
|
inverse\:f(x)=1650((1.022))^{t}
|
inverse of 5/(sqrt(x))
|
inverse\:\frac{5}{\sqrt{x}}
|
domain of f(x)=(x-8)/(x^2+x-72)
|
domain\:f(x)=\frac{x-8}{x^{2}+x-72}
|
inverse of f(x)=((x+4))/(x-3)
|
inverse\:f(x)=\frac{(x+4)}{x-3}
|
extreme points of f(x)=x^2
|
extreme\:points\:f(x)=x^{2}
|
slope intercept of 1/2 y+2=0
|
slope\:intercept\:\frac{1}{2}y+2=0
|
parallel y= 5/4 x
|
parallel\:y=\frac{5}{4}x
|
inverse of f(x)=sin(ln(x^3-2))
|
inverse\:f(x)=\sin(\ln(x^{3}-2))
|
inverse of (x-8)/7
|
inverse\:\frac{x-8}{7}
|
inverse of f(x)=x^4-8x^2+3
|
inverse\:f(x)=x^{4}-8x^{2}+3
|
extreme points of 0.8x^2+(72)/x
|
extreme\:points\:0.8x^{2}+\frac{72}{x}
|
distance (4,-5)(-1,7)
|
distance\:(4,-5)(-1,7)
|
asymptotes of f(x)= 1/(1-e^x)
|
asymptotes\:f(x)=\frac{1}{1-e^{x}}
|
domain of f(x)=(3x+5)/((2x-7))
|
domain\:f(x)=\frac{3x+5}{(2x-7)}
|
range of f(x)= 5/x
|
range\:f(x)=\frac{5}{x}
|
range of sqrt(2x+3)
|
range\:\sqrt{2x+3}
|
slope of y=-3x+4
|
slope\:y=-3x+4
|
domain of f(x)=sqrt(9+8x)
|
domain\:f(x)=\sqrt{9+8x}
|
range of 1-x^2
|
range\:1-x^{2}
|
asymptotes of f(x)= 2/(x+2)+3
|
asymptotes\:f(x)=\frac{2}{x+2}+3
|
asymptotes of f(x)=(4x^2)/(x^2-4x+4)
|
asymptotes\:f(x)=\frac{4x^{2}}{x^{2}-4x+4}
|
asymptotes of f(x)=(-4)\div (2x-5)
|
asymptotes\:f(x)=(-4)\div\:(2x-5)
|
amplitude of 4cos(1/3 x+(pi)/4)+1
|
amplitude\:4\cos(\frac{1}{3}x+\frac{\pi}{4})+1
|
midpoint (-2,-3)(4,5)
|
midpoint\:(-2,-3)(4,5)
|
line (5,119),(10,239)
|
line\:(5,119),(10,239)
|
range of sqrt(x-1)+2
|
range\:\sqrt{x-1}+2
|
line y=3x-4
|
line\:y=3x-4
|
range of-2sin(x)
|
range\:-2\sin(x)
|
domain of f(x)=5x^3-60x^2+12x+99
|
domain\:f(x)=5x^{3}-60x^{2}+12x+99
|
range of 1/x-1
|
range\:\frac{1}{x}-1
|
extreme points of f(x)=(ln(x))/(sqrt(x))
|
extreme\:points\:f(x)=\frac{\ln(x)}{\sqrt{x}}
|
slope of m=-3
|
slope\:m=-3
|
midpoint (6,-6)(2,4)
|
midpoint\:(6,-6)(2,4)
|
inverse of f(x)=(2x-3)/(x+4)
|
inverse\:f(x)=\frac{2x-3}{x+4}
|
domain of ((x-6))/((x+5))
|
domain\:\frac{(x-6)}{(x+5)}
|
range of f(x)=arcsin(x)
|
range\:f(x)=\arcsin(x)
|
extreme points of f(x)=5x^7+2x^3+6
|
extreme\:points\:f(x)=5x^{7}+2x^{3}+6
|
slope intercept of 2x+2y=10
|
slope\:intercept\:2x+2y=10
|
asymptotes of f(x)=(2x+5)/(-3x+9)
|
asymptotes\:f(x)=\frac{2x+5}{-3x+9}
|
parity 2x*cot(x)
|
parity\:2x\cdot\:\cot(x)
|
asymptotes of (x+3)/(x-2)
|
asymptotes\:\frac{x+3}{x-2}
|
inverse of 155
|
inverse\:155
|
domain of f(x)=sqrt(30-5x)
|
domain\:f(x)=\sqrt{30-5x}
|
extreme points of f(x)=3x^2-2
|
extreme\:points\:f(x)=3x^{2}-2
|
inverse of f(x)=(8x-1)/(2x+5)
|
inverse\:f(x)=\frac{8x-1}{2x+5}
|
inverse of f(x)=((x+9))/((x+1))
|
inverse\:f(x)=\frac{(x+9)}{(x+1)}
|
inflection points of 5x^2ln(x/4)
|
inflection\:points\:5x^{2}\ln(\frac{x}{4})
|
slope intercept of 8y-2x=-72
|
slope\:intercept\:8y-2x=-72
|
distance (-2,-8)(-10,-2)
|
distance\:(-2,-8)(-10,-2)
|
range of f(x)=y=9x
|
range\:f(x)=y=9x
|
asymptotes of f(x)= 1/((x-2)^2)
|
asymptotes\:f(x)=\frac{1}{(x-2)^{2}}
|
midpoint (0,5)(2,1)
|
midpoint\:(0,5)(2,1)
|
domain of f(x)=10-5/x
|
domain\:f(x)=10-\frac{5}{x}
|
inverse of f(x)=(x+4)/(x-3)
|
inverse\:f(x)=\frac{x+4}{x-3}
|