range of f(x)=(x-2)/((x-2)^2)
|
range\:f(x)=\frac{x-2}{(x-2)^{2}}
|
monotone intervals f(x)= 1/(x-4)+1
|
monotone\:intervals\:f(x)=\frac{1}{x-4}+1
|
line (0,0),(r,h)
|
line\:(0,0),(r,h)
|
domain of y=ln(x+3)
|
domain\:y=\ln(x+3)
|
perpendicular 3x+6y=5
|
perpendicular\:3x+6y=5
|
slope of 4x+4y=4
|
slope\:4x+4y=4
|
extreme points of x^3-3x+2
|
extreme\:points\:x^{3}-3x+2
|
domain of f(x)=-x+1
|
domain\:f(x)=-x+1
|
inverse of f(x)=-6x-7
|
inverse\:f(x)=-6x-7
|
perpendicular y=4x+5
|
perpendicular\:y=4x+5
|
slope intercept of 20x+9y=8
|
slope\:intercept\:20x+9y=8
|
periodicity of f(x)=sin(-4x)
|
periodicity\:f(x)=\sin(-4x)
|
range of f(x)=-x^2+4x
|
range\:f(x)=-x^{2}+4x
|
range of ln((-x+2)/(x+2))
|
range\:\ln(\frac{-x+2}{x+2})
|
critical points of f(x)=24x-2x^2
|
critical\:points\:f(x)=24x-2x^{2}
|
intercepts of f(x)=2x^2+x-15
|
intercepts\:f(x)=2x^{2}+x-15
|
shift 4-3sin(2/5 (x+1))
|
shift\:4-3\sin(\frac{2}{5}(x+1))
|
parity f(x)=-4
|
parity\:f(x)=-4
|
extreme points of x^2+1
|
extreme\:points\:x^{2}+1
|
intercepts of f(x)=2.8+4.2x-1.6x^2
|
intercepts\:f(x)=2.8+4.2x-1.6x^{2}
|
distance (2,1)(4,-4)
|
distance\:(2,1)(4,-4)
|
inverse of y=-10x
|
inverse\:y=-10x
|
domain of (2x^2+14x+29)/(x^2+7x+10)
|
domain\:\frac{2x^{2}+14x+29}{x^{2}+7x+10}
|
parallel 5x-2y=4,\at (2,-4)
|
parallel\:5x-2y=4,\at\:(2,-4)
|
critical points of f(x)=x^3-48x
|
critical\:points\:f(x)=x^{3}-48x
|
shift csc(x)
|
shift\:\csc(x)
|
line (-2pi,0),(-(3pi)/2 ,-A/2)
|
line\:(-2\pi,0),(-\frac{3\pi}{2},-\frac{A}{2})
|
inverse of f(x)=x^2+9
|
inverse\:f(x)=x^{2}+9
|
inverse of f(x)=(4-x)^{1/4}
|
inverse\:f(x)=(4-x)^{\frac{1}{4}}
|
asymptotes of f(x)=(4x+9)/(3x-6)
|
asymptotes\:f(x)=\frac{4x+9}{3x-6}
|
asymptotes of f(x)=(x^2+1)/(x-1)
|
asymptotes\:f(x)=\frac{x^{2}+1}{x-1}
|
intercepts of f(x)=(x^2-4)/(x^2)
|
intercepts\:f(x)=\frac{x^{2}-4}{x^{2}}
|
line m=2,\at (1,4)
|
line\:m=2,\at\:(1,4)
|
inverse of f(x)=sqrt(3x+9)
|
inverse\:f(x)=\sqrt{3x+9}
|
midpoint (-2,-7)(0,4)
|
midpoint\:(-2,-7)(0,4)
|
range of f(x)=-e^{x+7}
|
range\:f(x)=-e^{x+7}
|
critical points of xsqrt(8-x^2)
|
critical\:points\:x\sqrt{8-x^{2}}
|
line (-1,3)(1,-5)
|
line\:(-1,3)(1,-5)
|
distance ((pi)/6 ,6)((pi)/4 ,0)
|
distance\:(\frac{\pi}{6},6)(\frac{\pi}{4},0)
|
inverse of h(x)= 3/2 (x-11)
|
inverse\:h(x)=\frac{3}{2}(x-11)
|
asymptotes of f(x)=-2(5)^x
|
asymptotes\:f(x)=-2(5)^{x}
|
domain of g(x)=(3-x)/(x^2-2x-24)
|
domain\:g(x)=\frac{3-x}{x^{2}-2x-24}
|
inverse of (2x+1)^3
|
inverse\:(2x+1)^{3}
|
domain of sqrt(8-\sqrt{8-x)}
|
domain\:\sqrt{8-\sqrt{8-x}}
|
range of f(x)=-1/2 x^2-4x+10
|
range\:f(x)=-\frac{1}{2}x^{2}-4x+10
|
domain of f(x)=(1/(sqrt(x)))^2-16
|
domain\:f(x)=(\frac{1}{\sqrt{x}})^{2}-16
|
midpoint (9,-6)(6,-9)
|
midpoint\:(9,-6)(6,-9)
|
inverse of f(x)=(3x-5)/2
|
inverse\:f(x)=\frac{3x-5}{2}
|
asymptotes of f(x)=(x-4)/(x^2-6x+8)
|
asymptotes\:f(x)=\frac{x-4}{x^{2}-6x+8}
|
asymptotes of (2+x)/(x(x-3))
|
asymptotes\:\frac{2+x}{x(x-3)}
|
range of f(x)=(x+3)/4
|
range\:f(x)=\frac{x+3}{4}
|
inverse of f(x)= 5/(2x)
|
inverse\:f(x)=\frac{5}{2x}
|
periodicity of f(x)=4sin(2x)
|
periodicity\:f(x)=4\sin(2x)
|
extreme points of f(x)=3x^3-36
|
extreme\:points\:f(x)=3x^{3}-36
|
parity f(x)= 9/(sqrt(4-x^2))
|
parity\:f(x)=\frac{9}{\sqrt{4-x^{2}}}
|
extreme points of f(x)=x^2+2x-2
|
extreme\:points\:f(x)=x^{2}+2x-2
|
intercepts of f(x)=3x+y=6x-y=6
|
intercepts\:f(x)=3x+y=6x-y=6
|
inverse of f(x)=sqrt(x-8)
|
inverse\:f(x)=\sqrt{x-8}
|
domain of f(x)= 4/(x^2-4)
|
domain\:f(x)=\frac{4}{x^{2}-4}
|
intercepts of f(x)=-x^2+18x+144
|
intercepts\:f(x)=-x^{2}+18x+144
|
critical points of x^3(x+5)^2+5
|
critical\:points\:x^{3}(x+5)^{2}+5
|
domain of f(x)=sqrt((3-12x)/(6+4x))
|
domain\:f(x)=\sqrt{\frac{3-12x}{6+4x}}
|
domain of (sqrt(x+4))/(x-9)
|
domain\:\frac{\sqrt{x+4}}{x-9}
|
inverse of f(x)=2x^3-2
|
inverse\:f(x)=2x^{3}-2
|
asymptotes of ((x^3-8))/((x^2-5x+6))
|
asymptotes\:\frac{(x^{3}-8)}{(x^{2}-5x+6)}
|
domain of 3(3x+5)+5
|
domain\:3(3x+5)+5
|
domain of 1/(x-4)+1/(6-x)
|
domain\:\frac{1}{x-4}+\frac{1}{6-x}
|
inverse of 6/(5+x)
|
inverse\:\frac{6}{5+x}
|
inflection points of f(x)=x^4
|
inflection\:points\:f(x)=x^{4}
|
inverse of f(x)= 2/3 x+100
|
inverse\:f(x)=\frac{2}{3}x+100
|
inverse of f(x)=(2x^2-16)/(x+2)
|
inverse\:f(x)=\frac{2x^{2}-16}{x+2}
|
domain of f(x)=sqrt(ln(x+1))
|
domain\:f(x)=\sqrt{\ln(x+1)}
|
asymptotes of f(x)=((x+2))/(x^2+6x+8)
|
asymptotes\:f(x)=\frac{(x+2)}{x^{2}+6x+8}
|
range of 2x
|
range\:2x
|
domain of f(x)=(sqrt(x))/(x-9)
|
domain\:f(x)=\frac{\sqrt{x}}{x-9}
|
inverse of f(x)=((8x-7))/((5x+8))
|
inverse\:f(x)=\frac{(8x-7)}{(5x+8)}
|
inverse of f(x)=2(x+3)
|
inverse\:f(x)=2(x+3)
|
inverse of f(x)=ln(x+5)+3
|
inverse\:f(x)=\ln(x+5)+3
|
extreme points of f(x)=-2
|
extreme\:points\:f(x)=-2
|
inverse of a^2-7a-10
|
inverse\:a^{2}-7a-10
|
domain of f(x)=(3x^2-3)/(2x^2+7x+5)
|
domain\:f(x)=\frac{3x^{2}-3}{2x^{2}+7x+5}
|
domain of f(x)=(x+2)/(x^2-x-6)
|
domain\:f(x)=\frac{x+2}{x^{2}-x-6}
|
domain of x^3-27
|
domain\:x^{3}-27
|
domain of 5/(x+3)+2
|
domain\:\frac{5}{x+3}+2
|
asymptotes of ((x^2-49)/(x(x-7)))
|
asymptotes\:(\frac{x^{2}-49}{x(x-7)})
|
domain of f(x)=sqrt(ln(x-1))
|
domain\:f(x)=\sqrt{\ln(x-1)}
|
critical points of f(x)=x^4-5x^2+4
|
critical\:points\:f(x)=x^{4}-5x^{2}+4
|
intercepts of (x+1)/(x^2+x+1)
|
intercepts\:\frac{x+1}{x^{2}+x+1}
|
parallel y=2x+1(3,1)
|
parallel\:y=2x+1(3,1)
|
inverse of log_{3}(4^x-4)
|
inverse\:\log_{3}(4^{x}-4)
|
domain of f(x)=(x-3)x^2
|
domain\:f(x)=(x-3)x^{2}
|
intercepts of 2x-1
|
intercepts\:2x-1
|
inverse of f(x)=1-2x
|
inverse\:f(x)=1-2x
|
distance (-3,2)(4,-5)
|
distance\:(-3,2)(4,-5)
|
inverse of f(x)=(5e^x-2)/(e^x+8)
|
inverse\:f(x)=\frac{5e^{x}-2}{e^{x}+8}
|
domain of f(x)=ln(x^2+2x-15)
|
domain\:f(x)=\ln(x^{2}+2x-15)
|
range of 2/(x+5)
|
range\:\frac{2}{x+5}
|
intercepts of f(x)=x^2+9x+18
|
intercepts\:f(x)=x^{2}+9x+18
|
domain of 9/(x-8)
|
domain\:\frac{9}{x-8}
|
domain of (1-4t)/(5+t)
|
domain\:\frac{1-4t}{5+t}
|