range of f(x)=-sqrt(x+4)-1
|
range\:f(x)=-\sqrt{x+4}-1
|
inverse of f(x)=\sqrt[5]{x}-1
|
inverse\:f(x)=\sqrt[5]{x}-1
|
slope intercept of 3x-5y=15
|
slope\:intercept\:3x-5y=15
|
domain of-4x+3
|
domain\:-4x+3
|
inverse of f(x)=\sqrt[3]{x-11}
|
inverse\:f(x)=\sqrt[3]{x-11}
|
range of xsqrt(4-x^2)
|
range\:x\sqrt{4-x^{2}}
|
inverse of f(x)=2e^x-e^{-x}
|
inverse\:f(x)=2e^{x}-e^{-x}
|
inflection points of 12x(x-4)
|
inflection\:points\:12x(x-4)
|
range of f(x)=e^{-x}
|
range\:f(x)=e^{-x}
|
perpendicular y=-2/3 x,\at (4,-8)
|
perpendicular\:y=-\frac{2}{3}x,\at\:(4,-8)
|
asymptotes of f(x)=(3x-24)/(2x^2-8x-64)
|
asymptotes\:f(x)=\frac{3x-24}{2x^{2}-8x-64}
|
domain of (k+ln(x))/x
|
domain\:\frac{k+\ln(x)}{x}
|
perpendicular y= 1/2 x
|
perpendicular\:y=\frac{1}{2}x
|
inverse of f(x)=x^2-11
|
inverse\:f(x)=x^{2}-11
|
extreme points of sin(x)
|
extreme\:points\:\sin(x)
|
inverse of f(x)=(2x+3)/x
|
inverse\:f(x)=\frac{2x+3}{x}
|
inverse of f(x)=(-8)/x
|
inverse\:f(x)=\frac{-8}{x}
|
slope intercept of x=-(-y+4)/4
|
slope\:intercept\:x=-\frac{-y+4}{4}
|
domain of ln(x^2-6x)
|
domain\:\ln(x^{2}-6x)
|
distance (0,-7)(4,1)
|
distance\:(0,-7)(4,1)
|
domain of 1/(x^2-1)
|
domain\:\frac{1}{x^{2}-1}
|
inverse of f(x)= 1/(x+10)
|
inverse\:f(x)=\frac{1}{x+10}
|
inverse of f(x)=(16)/(5+3x)
|
inverse\:f(x)=\frac{16}{5+3x}
|
domain of g(x)=(2x)/(x^2-9)
|
domain\:g(x)=\frac{2x}{x^{2}-9}
|
inverse of f(x)=x^3-11
|
inverse\:f(x)=x^{3}-11
|
asymptotes of f(x)=(6-3x)/(x-8)
|
asymptotes\:f(x)=\frac{6-3x}{x-8}
|
domain of-sqrt(x+2)
|
domain\:-\sqrt{x+2}
|
domain of f(x)=(x-3)^2
|
domain\:f(x)=(x-3)^{2}
|
symmetry y=x^2+10
|
symmetry\:y=x^{2}+10
|
asymptotes of f(x)=(x^2-5x)/(x-2)
|
asymptotes\:f(x)=\frac{x^{2}-5x}{x-2}
|
asymptotes of x/(x^2+4)
|
asymptotes\:\frac{x}{x^{2}+4}
|
asymptotes of f(x)=(4x-3)/(6-3x)
|
asymptotes\:f(x)=\frac{4x-3}{6-3x}
|
inflection points of f(x)=-x^4-8x^3+7x+7
|
inflection\:points\:f(x)=-x^{4}-8x^{3}+7x+7
|
domain of f(x)=sqrt(x^2+8x)
|
domain\:f(x)=\sqrt{x^{2}+8x}
|
parity f(x)=sqrt(3x-x^3)
|
parity\:f(x)=\sqrt{3x-x^{3}}
|
distance (6,1)(-1,-3)
|
distance\:(6,1)(-1,-3)
|
domain of f(x)=(5-x)/(x^2-2x)
|
domain\:f(x)=\frac{5-x}{x^{2}-2x}
|
range of (2x-3)/(x+1)
|
range\:\frac{2x-3}{x+1}
|
asymptotes of f(x)= x/(2x+5)
|
asymptotes\:f(x)=\frac{x}{2x+5}
|
domain of f(x)=sqrt(x-5)
|
domain\:f(x)=\sqrt{x-5}
|
line (0,)(4,)
|
line\:(0,)(4,)
|
parity f(x)= 1/(2x^3)
|
parity\:f(x)=\frac{1}{2x^{3}}
|
line (4,-5),(-3,6)
|
line\:(4,-5),(-3,6)
|
domain of f(x)=sqrt((x^2-4)/(x-2))
|
domain\:f(x)=\sqrt{\frac{x^{2}-4}{x-2}}
|
distance (-3,-1)(-2,3)
|
distance\:(-3,-1)(-2,3)
|
inflection points of 6x^4+2x^3-12x^2+3
|
inflection\:points\:6x^{4}+2x^{3}-12x^{2}+3
|
(dy)/y
|
\frac{dy}{y}
|
inverse of f(x)=3+ln(x)
|
inverse\:f(x)=3+\ln(x)
|
range of f(x)=t^2-5
|
range\:f(x)=t^{2}-5
|
domain of (ln(x-1))/(x-1)
|
domain\:\frac{\ln(x-1)}{x-1}
|
line (2,3)(3,7)
|
line\:(2,3)(3,7)
|
inverse of f(x)= 3/2 (2x+1)
|
inverse\:f(x)=\frac{3}{2}(2x+1)
|
vertex f(x)=y=x^2
|
vertex\:f(x)=y=x^{2}
|
shift-4cos(2pi x)+2
|
shift\:-4\cos(2\pi\:x)+2
|
asymptotes of f(x)=(4x+4)/(x^2+4x+3)
|
asymptotes\:f(x)=\frac{4x+4}{x^{2}+4x+3}
|
parity f(x)=(x-4)/(x-1)
|
parity\:f(x)=\frac{x-4}{x-1}
|
domain of (x+3)^2
|
domain\:(x+3)^{2}
|
domain of f(x)=x^8-4
|
domain\:f(x)=x^{8}-4
|
extreme points of 3x^2+8x-11
|
extreme\:points\:3x^{2}+8x-11
|
domain of f(x)=2+x
|
domain\:f(x)=2+x
|
inverse of f(x)=5x-8
|
inverse\:f(x)=5x-8
|
inflection points of f(x)=-4/((x^2+1))
|
inflection\:points\:f(x)=-\frac{4}{(x^{2}+1)}
|
periodicity of f(x)=tan(4x+pi)
|
periodicity\:f(x)=\tan(4x+\pi)
|
domain of f(x)= 9/(x+6)
|
domain\:f(x)=\frac{9}{x+6}
|
domain of f(x)=(2x-3)/(4x+12)
|
domain\:f(x)=\frac{2x-3}{4x+12}
|
inflection points of sin(3x)
|
inflection\:points\:\sin(3x)
|
asymptotes of f(x)=1-(1+x)/x
|
asymptotes\:f(x)=1-\frac{1+x}{x}
|
asymptotes of f(x)=(8x^2+1)/(2x^2+3x-2)
|
asymptotes\:f(x)=\frac{8x^{2}+1}{2x^{2}+3x-2}
|
intercepts of f(x)=(2x-18)/(3x^2-20x-63)
|
intercepts\:f(x)=\frac{2x-18}{3x^{2}-20x-63}
|
inverse of f(x)=((x+1))/(x-2)
|
inverse\:f(x)=\frac{(x+1)}{x-2}
|
midpoint (-3,10)(20,-5)
|
midpoint\:(-3,10)(20,-5)
|
inflection points of x^{1/5}(x+6)
|
inflection\:points\:x^{\frac{1}{5}}(x+6)
|
domain of 5/(sqrt(t))
|
domain\:\frac{5}{\sqrt{t}}
|
inverse of (3x+1)/(2x-7)
|
inverse\:\frac{3x+1}{2x-7}
|
critical points of f(x)=x^2-4x
|
critical\:points\:f(x)=x^{2}-4x
|
domain of f(x)=x^4+2
|
domain\:f(x)=x^{4}+2
|
intercepts of f(x)=(-30(x-1)^2)/(x-5)
|
intercepts\:f(x)=\frac{-30(x-1)^{2}}{x-5}
|
slope intercept of x=-3
|
slope\:intercept\:x=-3
|
domain of f(x)=(1-x)/x
|
domain\:f(x)=\frac{1-x}{x}
|
critical points of x^{5/2}-3x^2
|
critical\:points\:x^{\frac{5}{2}}-3x^{2}
|
domain of y=x^2-3
|
domain\:y=x^{2}-3
|
perpendicular 2= 7/5 (-5)+b
|
perpendicular\:2=\frac{7}{5}(-5)+b
|
asymptotes of =(x^2+2x-15)/(x-4)
|
asymptotes\:=\frac{x^{2}+2x-15}{x-4}
|
parallel 2x-3y=9,\at (4,-1)
|
parallel\:2x-3y=9,\at\:(4,-1)
|
domain of 2^{x-1}
|
domain\:2^{x-1}
|
inverse of f(x)=-21/41 ln(4100x-20601)
|
inverse\:f(x)=-\frac{21}{41}\ln(4100x-20601)
|
domain of f(x)=4x^2-5x+8
|
domain\:f(x)=4x^{2}-5x+8
|
critical points of (-5)/(2x-7)
|
critical\:points\:\frac{-5}{2x-7}
|
domain of 5+sqrt(x+5)
|
domain\:5+\sqrt{x+5}
|
slope of 6x+10y=8
|
slope\:6x+10y=8
|
distance (a,-2a)(-a,-a)
|
distance\:(a,-2a)(-a,-a)
|
domain of f(x)=x*sqrt(x)
|
domain\:f(x)=x\cdot\:\sqrt{x}
|
domain of f(x)= 5/(x+7)
|
domain\:f(x)=\frac{5}{x+7}
|
symmetry 3x^2+7x+5DE
|
symmetry\:3x^{2}+7x+5DE
|
inverse of f(x)= 4/(x-1)+3
|
inverse\:f(x)=\frac{4}{x-1}+3
|
extreme points of f(x)=e^t-t
|
extreme\:points\:f(x)=e^{t}-t
|
midpoint (1,1)(5,5)
|
midpoint\:(1,1)(5,5)
|
critical points of f(x)=2x^3-15x^2+36x+1
|
critical\:points\:f(x)=2x^{3}-15x^{2}+36x+1
|
line (4,1)(12,6)
|
line\:(4,1)(12,6)
|
domain of f(x)=5x-9
|
domain\:f(x)=5x-9
|