extreme points of f(x)=x^2-4x-45
|
extreme\:points\:f(x)=x^{2}-4x-45
|
symmetry (x+2)^2-3
|
symmetry\:(x+2)^{2}-3
|
range of sqrt(x^2-4x)
|
range\:\sqrt{x^{2}-4x}
|
intercepts of f(x)=10x-9y=90
|
intercepts\:f(x)=10x-9y=90
|
domain of f(x)=(sqrt(x+9))/((x+3)(x-7))
|
domain\:f(x)=\frac{\sqrt{x+9}}{(x+3)(x-7)}
|
distance (2,2)(8,5)
|
distance\:(2,2)(8,5)
|
slope of 5x-2y=3
|
slope\:5x-2y=3
|
inverse of f(x)=9x+3
|
inverse\:f(x)=9x+3
|
domain of f(x)= 9/(1-e^x)
|
domain\:f(x)=\frac{9}{1-e^{x}}
|
domain of f(x)= 5/(x-5)
|
domain\:f(x)=\frac{5}{x-5}
|
asymptotes of f(x)=(3e^x)/(e^x-4)
|
asymptotes\:f(x)=\frac{3e^{x}}{e^{x}-4}
|
inverse of f(x)=(7-4x)/(8+3x)
|
inverse\:f(x)=\frac{7-4x}{8+3x}
|
parity f(x)=3x^3+x
|
parity\:f(x)=3x^{3}+x
|
extreme points of f(x)=-x^2+3x-2
|
extreme\:points\:f(x)=-x^{2}+3x-2
|
symmetry y=3x^3
|
symmetry\:y=3x^{3}
|
distance (3,4)(0,-8)
|
distance\:(3,4)(0,-8)
|
inverse of f(x)=sqrt(10-x)
|
inverse\:f(x)=\sqrt{10-x}
|
asymptotes of f(x)=(x^2+x-6)/(x-4)
|
asymptotes\:f(x)=\frac{x^{2}+x-6}{x-4}
|
domain of f(x)=((sqrt(x)))/(4x^2+3x-1)
|
domain\:f(x)=\frac{(\sqrt{x})}{4x^{2}+3x-1}
|
domain of sqrt(3)
|
domain\:\sqrt{3}
|
inverse of f(x)=\sqrt[12]{x}
|
inverse\:f(x)=\sqrt[12]{x}
|
asymptotes of f(x)=(3x^4+19)/(15x^5+25x)
|
asymptotes\:f(x)=\frac{3x^{4}+19}{15x^{5}+25x}
|
domain of f(x)=(7x+9)/(9x-7)*(9x)/(9x-7)
|
domain\:f(x)=\frac{7x+9}{9x-7}\cdot\:\frac{9x}{9x-7}
|
domain of 1-x^2
|
domain\:1-x^{2}
|
slope of m= 3/2
|
slope\:m=\frac{3}{2}
|
asymptotes of f(x)=(3x-12)/(x^2-8x+16)
|
asymptotes\:f(x)=\frac{3x-12}{x^{2}-8x+16}
|
midpoint (4,3)(-2,3)
|
midpoint\:(4,3)(-2,3)
|
slope of-1/5
|
slope\:-\frac{1}{5}
|
inverse of f(x)=((x+3))/(x-2)
|
inverse\:f(x)=\frac{(x+3)}{x-2}
|
domain of f(x)=((x-8))/((x^2-64))
|
domain\:f(x)=\frac{(x-8)}{(x^{2}-64)}
|
inverse of f(x)=(x+4)/(3x-2)
|
inverse\:f(x)=\frac{x+4}{3x-2}
|
domain of (x^2+x)/(-4x^2-8x+12)
|
domain\:\frac{x^{2}+x}{-4x^{2}-8x+12}
|
inflection points of f(x)=tan(x)
|
inflection\:points\:f(x)=\tan(x)
|
inverse of 3x-6
|
inverse\:3x-6
|
midpoint (-11,0)(9,-1)
|
midpoint\:(-11,0)(9,-1)
|
domain of f(x)=(ln(x^2+1))/(x^2+1)
|
domain\:f(x)=\frac{\ln(x^{2}+1)}{x^{2}+1}
|
critical points of x^2+(16)/x
|
critical\:points\:x^{2}+\frac{16}{x}
|
asymptotes of f(x)=(x+3)/(x(x+6))
|
asymptotes\:f(x)=\frac{x+3}{x(x+6)}
|
range of 5-sqrt(x+25)
|
range\:5-\sqrt{x+25}
|
asymptotes of x/(x^2-1)
|
asymptotes\:\frac{x}{x^{2}-1}
|
midpoint (1,8)(7,-4)
|
midpoint\:(1,8)(7,-4)
|
perpendicular y=-1/2 x-4
|
perpendicular\:y=-\frac{1}{2}x-4
|
domain of x^4-x^2sin(x)+1
|
domain\:x^{4}-x^{2}\sin(x)+1
|
inverse of f(x)=x^2+2x+2
|
inverse\:f(x)=x^{2}+2x+2
|
inverse of x/(sqrt(x^2+7))
|
inverse\:\frac{x}{\sqrt{x^{2}+7}}
|
domain of f(x)=(sqrt(10-x/3))/(x^5-81x)
|
domain\:f(x)=\frac{\sqrt{10-\frac{x}{3}}}{x^{5}-81x}
|
midpoint (3,-1)(-5,-5)
|
midpoint\:(3,-1)(-5,-5)
|
inverse of y=6x-3
|
inverse\:y=6x-3
|
intercepts of f(x)=-2x^2+8x+7
|
intercepts\:f(x)=-2x^{2}+8x+7
|
inflection points of x^3-x^2
|
inflection\:points\:x^{3}-x^{2}
|
inverse of g(x)=-2/3 x-5
|
inverse\:g(x)=-\frac{2}{3}x-5
|
domain of-x^2-8x+9
|
domain\:-x^{2}-8x+9
|
asymptotes of f(x)=xsqrt(4-x)
|
asymptotes\:f(x)=x\sqrt{4-x}
|
inverse of f(x)= 3/2 (x-11)
|
inverse\:f(x)=\frac{3}{2}(x-11)
|
inverse of f(x)=((x+3))/x
|
inverse\:f(x)=\frac{(x+3)}{x}
|
intercepts of f(x)=(x+1)^2-36
|
intercepts\:f(x)=(x+1)^{2}-36
|
intercepts of-2x^3+18x^2+168x-4
|
intercepts\:-2x^{3}+18x^{2}+168x-4
|
domain of f(x)=x^2(x-3)
|
domain\:f(x)=x^{2}(x-3)
|
inverse of f(x)=(x-1)^2+3
|
inverse\:f(x)=(x-1)^{2}+3
|
domain of f(x)=(5x^2-5)/(6x)
|
domain\:f(x)=\frac{5x^{2}-5}{6x}
|
inverse of f(x)= 1/(2x+1)
|
inverse\:f(x)=\frac{1}{2x+1}
|
domain of 9x^2+5
|
domain\:9x^{2}+5
|
range of x/(x-4)
|
range\:\frac{x}{x-4}
|
intercepts of x^2-8x+15
|
intercepts\:x^{2}-8x+15
|
domain of f(x)=sqrt((-2x)/(x^2-16))
|
domain\:f(x)=\sqrt{\frac{-2x}{x^{2}-16}}
|
intercepts of y= 6/7 x-10
|
intercepts\:y=\frac{6}{7}x-10
|
line (-8,28),(-4,16)
|
line\:(-8,28),(-4,16)
|
midpoint (6,6)(2,2)
|
midpoint\:(6,6)(2,2)
|
domain of f(x)=-3^x
|
domain\:f(x)=-3^{x}
|
inverse of f(x)=4x^2+6
|
inverse\:f(x)=4x^{2}+6
|
slope of x-y=8
|
slope\:x-y=8
|
inverse of f(x)=(5x+2)/(x-3)
|
inverse\:f(x)=\frac{5x+2}{x-3}
|
critical points of x^2-2x+5
|
critical\:points\:x^{2}-2x+5
|
domain of f(x)=x^3+3
|
domain\:f(x)=x^{3}+3
|
intercepts of (x^3)/3-x^2+x+10
|
intercepts\:\frac{x^{3}}{3}-x^{2}+x+10
|
inverse of f(x)=ln(-x)
|
inverse\:f(x)=\ln(-x)
|
asymptotes of f(x)=((5x^2-3x-1))/(x-1)
|
asymptotes\:f(x)=\frac{(5x^{2}-3x-1)}{x-1}
|
inverse of y=(1/3)^{x-3}+2
|
inverse\:y=(\frac{1}{3})^{x-3}+2
|
intercepts of y=-x^2+9
|
intercepts\:y=-x^{2}+9
|
domain of f(x)=2x+8
|
domain\:f(x)=2x+8
|
inverse of (x-2)^2+4
|
inverse\:(x-2)^{2}+4
|
critical points of x^3+6x^2-63x
|
critical\:points\:x^{3}+6x^{2}-63x
|
distance (-15,11)(-22,-10)
|
distance\:(-15,11)(-22,-10)
|
periodicity of 1.5sin(4x)
|
periodicity\:1.5\sin(4x)
|
inverse of sqrt(7-2x)+2
|
inverse\:\sqrt{7-2x}+2
|
domain of f(x)=(x+3)
|
domain\:f(x)=(x+3)
|
domain of 8x^2+1
|
domain\:8x^{2}+1
|
slope of 2x+y=5
|
slope\:2x+y=5
|
perpendicular y-4= 9/8 (x-9)(5,5)
|
perpendicular\:y-4=\frac{9}{8}(x-9)(5,5)
|
monotone intervals f(x)=x(x-1)^{2/5}
|
monotone\:intervals\:f(x)=x(x-1)^{\frac{2}{5}}
|
log_{5}(x)
|
\log_{5}(x)
|
inverse of f(x)=(x+3)^3
|
inverse\:f(x)=(x+3)^{3}
|
midpoint (2,-3)(9,21)
|
midpoint\:(2,-3)(9,21)
|
periodicity of f(x)=-tan(x-(4pi)/3)
|
periodicity\:f(x)=-\tan(x-\frac{4\pi}{3})
|
monotone intervals f(x)=x^4-4x^2
|
monotone\:intervals\:f(x)=x^{4}-4x^{2}
|
slope of 3x+7y=4
|
slope\:3x+7y=4
|
domain of f(x)=(4x-1)/(2x+1)
|
domain\:f(x)=\frac{4x-1}{2x+1}
|
intercepts of f(x)=y=x^2+2x-15
|
intercepts\:f(x)=y=x^{2}+2x-15
|
inverse of f(x)=-3(x+6)
|
inverse\:f(x)=-3(x+6)
|
critical points of f(x)=x^2+e^{16x}
|
critical\:points\:f(x)=x^{2}+e^{16x}
|