range of x^2-2x-8
|
range\:x^{2}-2x-8
|
intercepts of f(x)=-(5^x)-3
|
intercepts\:f(x)=-(5^{x})-3
|
domain of f(x)=(x^2+1)/(x-1)
|
domain\:f(x)=\frac{x^{2}+1}{x-1}
|
intercepts of (x^2)/(x^2+x-6)
|
intercepts\:\frac{x^{2}}{x^{2}+x-6}
|
range of-4sin(-(pi)/3 x)
|
range\:-4\sin(-\frac{\pi}{3}x)
|
critical points of y=x^6(x-4)^5
|
critical\:points\:y=x^{6}(x-4)^{5}
|
inverse of f(x)=300-10x
|
inverse\:f(x)=300-10x
|
domain of-3sqrt(2x-4)+1
|
domain\:-3\sqrt{2x-4}+1
|
slope of f(x)=3x
|
slope\:f(x)=3x
|
inverse of (7-x)^2
|
inverse\:(7-x)^{2}
|
inverse of f(x)=4x-15
|
inverse\:f(x)=4x-15
|
inverse of f(x)=7-x^3
|
inverse\:f(x)=7-x^{3}
|
intercepts of f(x)=-1/2 (2x-4)
|
intercepts\:f(x)=-\frac{1}{2}(2x-4)
|
domain of f(x)=(10)/(2/x-1)
|
domain\:f(x)=\frac{10}{\frac{2}{x}-1}
|
extreme points of f(x)=-x^3+3x^2+24x-3
|
extreme\:points\:f(x)=-x^{3}+3x^{2}+24x-3
|
domain of f(x)=2x-9
|
domain\:f(x)=2x-9
|
critical points of xsqrt(36-x^2)
|
critical\:points\:x\sqrt{36-x^{2}}
|
domain of 9t-4t^2
|
domain\:9t-4t^{2}
|
asymptotes of f(x)=(8e^x)/(1+e^{-x)}
|
asymptotes\:f(x)=\frac{8e^{x}}{1+e^{-x}}
|
extreme points of f(x)=7x^2
|
extreme\:points\:f(x)=7x^{2}
|
range of-sqrt(49-x^2)
|
range\:-\sqrt{49-x^{2}}
|
parity f(x)=cos(-2sin^2(x^3))
|
parity\:f(x)=\cos(-2\sin^{2}(x^{3}))
|
domain of (2x)/(2x-4)
|
domain\:\frac{2x}{2x-4}
|
inverse of f(x)= 1/2 sqrt(x-4)
|
inverse\:f(x)=\frac{1}{2}\sqrt{x-4}
|
domain of y=(x^4)/(sqrt(25-x^2))
|
domain\:y=\frac{x^{4}}{\sqrt{25-x^{2}}}
|
domain of f(x)= 4/(y^2-y)
|
domain\:f(x)=\frac{4}{y^{2}-y}
|
inverse of f(x)=12x
|
inverse\:f(x)=12x
|
inverse of f(x)=(2x-1)/(x+4)
|
inverse\:f(x)=\frac{2x-1}{x+4}
|
periodicity of f(x)=2sin(3x)
|
periodicity\:f(x)=2\sin(3x)
|
asymptotes of f(x)=(x+7)/(x+5)
|
asymptotes\:f(x)=\frac{x+7}{x+5}
|
inverse of f(x)=-5x+1
|
inverse\:f(x)=-5x+1
|
domain of (x+3)/(sqrt(x^2+x-2))
|
domain\:\frac{x+3}{\sqrt{x^{2}+x-2}}
|
midpoint (-5,4)(3,-1)
|
midpoint\:(-5,4)(3,-1)
|
domain of f(x)=x^2+x-10
|
domain\:f(x)=x^{2}+x-10
|
inverse of f(x)=((5x))/(x+7)
|
inverse\:f(x)=\frac{(5x)}{x+7}
|
asymptotes of arctan((x-1)/(x+1))
|
asymptotes\:\arctan(\frac{x-1}{x+1})
|
range of f(x)=2x^2+5
|
range\:f(x)=2x^{2}+5
|
asymptotes of f(x)=(x^2-2x-1)/(1-x)
|
asymptotes\:f(x)=\frac{x^{2}-2x-1}{1-x}
|
parity y=(1-e^x)^{1/(e^x)}
|
parity\:y=(1-e^{x})^{\frac{1}{e^{x}}}
|
domain of f(x)= 1/(x+8)
|
domain\:f(x)=\frac{1}{x+8}
|
domain of f(x)=(2*x+3)e
|
domain\:f(x)=(2\cdot\:x+3)e
|
domain of f(x)=(sqrt(3-2x))-(sqrt(x+4))
|
domain\:f(x)=(\sqrt{3-2x})-(\sqrt{x+4})
|
extreme points of (x+1)/(x+3)
|
extreme\:points\:\frac{x+1}{x+3}
|
asymptotes of f(x)=(2x^2+1)/(3x-5)
|
asymptotes\:f(x)=\frac{2x^{2}+1}{3x-5}
|
intercepts of 1/(x-3)
|
intercepts\:\frac{1}{x-3}
|
inverse of f(x)=-4x+4
|
inverse\:f(x)=-4x+4
|
inflection points of f(x)=4x^3-6x^2+8x-8
|
inflection\:points\:f(x)=4x^{3}-6x^{2}+8x-8
|
inverse of 3x^2-2
|
inverse\:3x^{2}-2
|
slope intercept of sqrt(3x+7),a=3
|
slope\:intercept\:\sqrt{3x+7},a=3
|
asymptotes of (2x-3)/(x^2-4)
|
asymptotes\:\frac{2x-3}{x^{2}-4}
|
slope intercept of 9-(2y+4x)=4(x-y)
|
slope\:intercept\:9-(2y+4x)=4(x-y)
|
domain of f(x)=(-1+4x)/(x-3)
|
domain\:f(x)=\frac{-1+4x}{x-3}
|
inverse of f(x)=(2-7(-2))/((-2)-1)
|
inverse\:f(x)=\frac{2-7(-2)}{(-2)-1}
|
inverse of f(x)=(x-5)/3
|
inverse\:f(x)=\frac{x-5}{3}
|
domain of e^{cos(x)}
|
domain\:e^{\cos(x)}
|
critical points of 1/(3x^2+8)
|
critical\:points\:\frac{1}{3x^{2}+8}
|
intercepts of-x^2+10x
|
intercepts\:-x^{2}+10x
|
slope of (1,-1/2)(-2-7/2)
|
slope\:(1,-\frac{1}{2})(-2-\frac{7}{2})
|
midpoint (2,-2)(5,1)
|
midpoint\:(2,-2)(5,1)
|
inverse of f(x)=-log_{0.5}(x)+4
|
inverse\:f(x)=-\log_{0.5}(x)+4
|
domain of y=-sqrt(x+3)
|
domain\:y=-\sqrt{x+3}
|
intercepts of f(x)=8cos(2(x-6))+3
|
intercepts\:f(x)=8\cos(2(x-6))+3
|
range of f(x)=sqrt(49-x^2)
|
range\:f(x)=\sqrt{49-x^{2}}
|
domain of tan((pi)/8 x)
|
domain\:\tan(\frac{\pi}{8}x)
|
critical points of h(x)=sqrt(x^2+4)
|
critical\:points\:h(x)=\sqrt{x^{2}+4}
|
asymptotes of (sqrt(9x^2-x))/(2x+1)
|
asymptotes\:\frac{\sqrt{9x^{2}-x}}{2x+1}
|
slope intercept of 2x+y=1
|
slope\:intercept\:2x+y=1
|
inverse of f(x)=(8x)/(x^2+1)
|
inverse\:f(x)=\frac{8x}{x^{2}+1}
|
domain of (4x+4)/(x^2+3x+2)
|
domain\:\frac{4x+4}{x^{2}+3x+2}
|
critical points of f(x)=-3x^2+36x
|
critical\:points\:f(x)=-3x^{2}+36x
|
asymptotes of f
|
asymptotes\:f
|
line m=-4(6,5)
|
line\:m=-4(6,5)
|
inverse of 111
|
inverse\:111
|
parity tan(2x-5)
|
parity\:\tan(2x-5)
|
range of f(x)=-25x^2-10x-1
|
range\:f(x)=-25x^{2}-10x-1
|
asymptotes of f(x)=(-2x)/(x+1)
|
asymptotes\:f(x)=\frac{-2x}{x+1}
|
extreme points of (x-3)^7
|
extreme\:points\:(x-3)^{7}
|
inverse of f(x)= 4/(1+x^2)
|
inverse\:f(x)=\frac{4}{1+x^{2}}
|
amplitude of f(x)=0.5cos(6x)
|
amplitude\:f(x)=0.5\cos(6x)
|
domain of (2x-1)/(3x^3-x)
|
domain\:\frac{2x-1}{3x^{3}-x}
|
inflection points of f(x)=-x^3+6x^2-9x+1
|
inflection\:points\:f(x)=-x^{3}+6x^{2}-9x+1
|
midpoint (0,-4)(-4,2)
|
midpoint\:(0,-4)(-4,2)
|
monotone intervals f(x)= 1/(x-2)+1
|
monotone\:intervals\:f(x)=\frac{1}{x-2}+1
|
domain of f(x)= 4/x-6/(x+6)
|
domain\:f(x)=\frac{4}{x}-\frac{6}{x+6}
|
domain of sqrt(x+10)+3
|
domain\:\sqrt{x+10}+3
|
asymptotes of-cos^2(X)
|
asymptotes\:-\cos^{2}(X)
|
inverse of y=x^2+5
|
inverse\:y=x^{2}+5
|
domain of-sqrt(3x-2)
|
domain\:-\sqrt{3x-2}
|
range of f(x)=sqrt(x^2-3x)
|
range\:f(x)=\sqrt{x^{2}-3x}
|
perpendicular x-4=5,\at (0,7)
|
perpendicular\:x-4=5,\at\:(0,7)
|
range of 3x-1
|
range\:3x-1
|
domain of f(x)= 2/3 x-6
|
domain\:f(x)=\frac{2}{3}x-6
|
range of f(x)=3-2x
|
range\:f(x)=3-2x
|
extreme points of f(x)=(x^2)/(x-1)
|
extreme\:points\:f(x)=\frac{x^{2}}{x-1}
|
critical points of f(x)=x^3-3x^2+1
|
critical\:points\:f(x)=x^{3}-3x^{2}+1
|
inverse of f(x)=2.5pi(x+1.25)
|
inverse\:f(x)=2.5\pi(x+1.25)
|
domain of sqrt((9+x)/(9-x))
|
domain\:\sqrt{\frac{9+x}{9-x}}
|
midpoint (-1,8)(0,9)
|
midpoint\:(-1,8)(0,9)
|
slope of y=1+6x
|
slope\:y=1+6x
|
domain of f(x)=cot(x)
|
domain\:f(x)=\cot(x)
|