domain of f(x)=log_{10}(x-2)(x-4)
|
domain\:f(x)=\log_{10}(x-2)(x-4)
|
inverse of x^2+2
|
inverse\:x^{2}+2
|
domain of f(x)=(-9)/(x^2-3x)
|
domain\:f(x)=\frac{-9}{x^{2}-3x}
|
domain of f(x)=(2x-5)/(sqrt(x-1))
|
domain\:f(x)=\frac{2x-5}{\sqrt{x-1}}
|
intercepts of f(x)=x^2+8x+11
|
intercepts\:f(x)=x^{2}+8x+11
|
inverse of f(x)= 4/(x-2)+1
|
inverse\:f(x)=\frac{4}{x-2}+1
|
domain of x^2-1
|
domain\:x^{2}-1
|
slope of 1y=3
|
slope\:1y=3
|
domain of f(x)=log_{3}(x-6)+4
|
domain\:f(x)=\log_{3}(x-6)+4
|
range of f(x)=cos(x)
|
range\:f(x)=\cos(x)
|
domain of f(x)=(2/x)-(x/(x+2))
|
domain\:f(x)=(\frac{2}{x})-(\frac{x}{x+2})
|
domain of f(x)=(3x^2-7x-6)/(x^2-16x+55)
|
domain\:f(x)=\frac{3x^{2}-7x-6}{x^{2}-16x+55}
|
inverse of 6x+5
|
inverse\:6x+5
|
intercepts of f(x)=x^2+y^2+2-8y+1=0
|
intercepts\:f(x)=x^{2}+y^{2}+2-8y+1=0
|
range of f(x)=4*5^x
|
range\:f(x)=4\cdot\:5^{x}
|
domain of f(x)=(sqrt(x+1))/(x-1)
|
domain\:f(x)=\frac{\sqrt{x+1}}{x-1}
|
range of f(x)= 1/(x+1)
|
range\:f(x)=\frac{1}{x+1}
|
line y=-4x+5
|
line\:y=-4x+5
|
midpoint (0,4)(-4,-12)
|
midpoint\:(0,4)(-4,-12)
|
domain of f(x)=(6-3x)/(x-8)
|
domain\:f(x)=\frac{6-3x}{x-8}
|
intercepts of f(x)=-x^2+2x-4
|
intercepts\:f(x)=-x^{2}+2x-4
|
asymptotes of (x^2-6x+8)/(x-2)
|
asymptotes\:\frac{x^{2}-6x+8}{x-2}
|
domain of-3/7
|
domain\:-\frac{3}{7}
|
slope intercept of y=-3/4 x-10
|
slope\:intercept\:y=-\frac{3}{4}x-10
|
inverse of f(x)=sqrt(2x)+5
|
inverse\:f(x)=\sqrt{2x}+5
|
intercepts of f(x)=(x^2+18x+81)/(2x+18)
|
intercepts\:f(x)=\frac{x^{2}+18x+81}{2x+18}
|
slope of 5x+2y=1
|
slope\:5x+2y=1
|
domain of y=(1-6x)/3
|
domain\:y=\frac{1-6x}{3}
|
range of x^2-x-6
|
range\:x^{2}-x-6
|
critical points of f(x)=(x-1)/(x^2-x+1)
|
critical\:points\:f(x)=\frac{x-1}{x^{2}-x+1}
|
domain of f(x)=(2x^3-5)/(x^2+x-6)
|
domain\:f(x)=\frac{2x^{3}-5}{x^{2}+x-6}
|
slope of y= 4/5 x+2
|
slope\:y=\frac{4}{5}x+2
|
domain of g(x)=|x|+13
|
domain\:g(x)=|x|+13
|
inverse of f(x)=y
|
inverse\:f(x)=y
|
extreme points of f(x)=(6x)/(x^2+9)
|
extreme\:points\:f(x)=\frac{6x}{x^{2}+9}
|
inverse of f(x)=2-sqrt(3-x)
|
inverse\:f(x)=2-\sqrt{3-x}
|
domain of f(x)=2(x+1)^2
|
domain\:f(x)=2(x+1)^{2}
|
extreme points of x^3-5x
|
extreme\:points\:x^{3}-5x
|
line (-3,0),(0,4)
|
line\:(-3,0),(0,4)
|
domain of f(x)=-4x+11
|
domain\:f(x)=-4x+11
|
midpoint (1,2)(7,8)
|
midpoint\:(1,2)(7,8)
|
distance (3,5)(4,6)
|
distance\:(3,5)(4,6)
|
inverse of f(x)=7-3x
|
inverse\:f(x)=7-3x
|
range of (10)/(36-x^2)
|
range\:\frac{10}{36-x^{2}}
|
slope of y=4x-1
|
slope\:y=4x-1
|
inverse of f(x)=(3x+4)/5
|
inverse\:f(x)=\frac{3x+4}{5}
|
asymptotes of f(x)= 4/(x^2+1)
|
asymptotes\:f(x)=\frac{4}{x^{2}+1}
|
inflection points of f(x)=(3-x)e^{-x}
|
inflection\:points\:f(x)=(3-x)e^{-x}
|
extreme points of f(x)=(x-1)^2,[0,4]
|
extreme\:points\:f(x)=(x-1)^{2},[0,4]
|
midpoint (-10,3)(-4,5)
|
midpoint\:(-10,3)(-4,5)
|
line (3,-2)(3,7)
|
line\:(3,-2)(3,7)
|
domain of f(x)=((sin(5x)))/(1+sin(5x))
|
domain\:f(x)=\frac{(\sin(5x))}{1+\sin(5x)}
|
domain of sqrt(1-6^t)
|
domain\:\sqrt{1-6^{t}}
|
intercepts of (x^2+x+1)/x
|
intercepts\:\frac{x^{2}+x+1}{x}
|
slope of x=6y+5
|
slope\:x=6y+5
|
domain of f(x)= 3/(2x+8)
|
domain\:f(x)=\frac{3}{2x+8}
|
inverse of y=5^x-9
|
inverse\:y=5^{x}-9
|
range of f(x)=1-x^2
|
range\:f(x)=1-x^{2}
|
domain of y=(-1)/(x-2)+3
|
domain\:y=\frac{-1}{x-2}+3
|
extreme points of f(x)=4-3x^2
|
extreme\:points\:f(x)=4-3x^{2}
|
inverse of f(x)= 2/3 x-1/3
|
inverse\:f(x)=\frac{2}{3}x-\frac{1}{3}
|
perpendicular y= x/2-9,\at (-1,-2)
|
perpendicular\:y=\frac{x}{2}-9,\at\:(-1,-2)
|
domain of (3x+9)/(1-x)
|
domain\:\frac{3x+9}{1-x}
|
domain of f(x)=-3x+8
|
domain\:f(x)=-3x+8
|
domain of f(x)=e^{x-1}+2
|
domain\:f(x)=e^{x-1}+2
|
domain of f(x)=(9/x)/(9/x+9)
|
domain\:f(x)=\frac{\frac{9}{x}}{\frac{9}{x}+9}
|
domain of f(x)=2|0.5x+4|-1
|
domain\:f(x)=2|0.5x+4|-1
|
range of 1/(x^4)
|
range\:\frac{1}{x^{4}}
|
range of y=-x^2-2x+3
|
range\:y=-x^{2}-2x+3
|
domain of f(x)=-x^2+2x+4
|
domain\:f(x)=-x^{2}+2x+4
|
f(x)=(x+1)^2
|
f(x)=(x+1)^{2}
|
asymptotes of f(x)=(x+1)/((x+1)^2-3)
|
asymptotes\:f(x)=\frac{x+1}{(x+1)^{2}-3}
|
amplitude of cos(4x)
|
amplitude\:\cos(4x)
|
critical points of f(x)=((x+9))/(x+4)
|
critical\:points\:f(x)=\frac{(x+9)}{x+4}
|
domain of f(x)=(1/x , 1/(x-4))
|
domain\:f(x)=(\frac{1}{x},\frac{1}{x-4})
|
domain of f(x)=8sqrt(x)+5
|
domain\:f(x)=8\sqrt{x}+5
|
distance (-1/2 , 3/2)(-2,3)
|
distance\:(-\frac{1}{2},\frac{3}{2})(-2,3)
|
domain of f(x)=sqrt((x+3)(-x^2+25))
|
domain\:f(x)=\sqrt{(x+3)(-x^{2}+25)}
|
inverse of (x+3)/(x-1)
|
inverse\:\frac{x+3}{x-1}
|
asymptotes of f(x)=(8x^2)/(x-8)
|
asymptotes\:f(x)=\frac{8x^{2}}{x-8}
|
distance (7,0)(7,8)
|
distance\:(7,0)(7,8)
|
inverse of f(x)=(8-t)^{1/4}
|
inverse\:f(x)=(8-t)^{\frac{1}{4}}
|
slope intercept of-y-x=-5
|
slope\:intercept\:-y-x=-5
|
parallel 4x-5y=-10(6,3)
|
parallel\:4x-5y=-10(6,3)
|
amplitude of f(x)=229sin(120pi x)
|
amplitude\:f(x)=229\sin(120\pi\:x)
|
slope intercept of 3x-2y=10
|
slope\:intercept\:3x-2y=10
|
critical points of e^{-2.5x^2}
|
critical\:points\:e^{-2.5x^{2}}
|
slope of x=-9
|
slope\:x=-9
|
domain of (sqrt(x+2))/(x-8)
|
domain\:\frac{\sqrt{x+2}}{x-8}
|
periodicity of f(x)=cot(2x)
|
periodicity\:f(x)=\cot(2x)
|
range of sqrt(x+1)-3
|
range\:\sqrt{x+1}-3
|
asymptotes of f(x)= 5/(4x-10)
|
asymptotes\:f(x)=\frac{5}{4x-10}
|
inverse of f(x)=x-8
|
inverse\:f(x)=x-8
|
asymptotes of (x^3)/(x^2-4)
|
asymptotes\:\frac{x^{3}}{x^{2}-4}
|
parity f(x)=2^x
|
parity\:f(x)=2^{x}
|
domain of f(x)=log_{3}(9-2x)
|
domain\:f(x)=\log_{3}(9-2x)
|
intercepts of f(x)=-ln(x^2-1)
|
intercepts\:f(x)=-\ln(x^{2}-1)
|
domain of (x+6)^3
|
domain\:(x+6)^{3}
|
intercepts of f(x)=(x-1)/(x+1)
|
intercepts\:f(x)=\frac{x-1}{x+1}
|
inverse of f(x)=5x+17
|
inverse\:f(x)=5x+17
|