slope intercept of 15x-16y=-16
|
slope\:intercept\:15x-16y=-16
|
extreme points of y=x^2+x-6
|
extreme\:points\:y=x^{2}+x-6
|
inverse of f(x)= 2/(-x+1)-2
|
inverse\:f(x)=\frac{2}{-x+1}-2
|
asymptotes of (x^2-2x-8)/(x^2-7x+12)
|
asymptotes\:\frac{x^{2}-2x-8}{x^{2}-7x+12}
|
asymptotes of f(x)=(-7x^2+1)/(x^2+x+8)
|
asymptotes\:f(x)=\frac{-7x^{2}+1}{x^{2}+x+8}
|
intercepts of f(x)=x^2+36
|
intercepts\:f(x)=x^{2}+36
|
perpendicular-2x
|
perpendicular\:-2x
|
domain of f(x)= 4/(3/x-1)
|
domain\:f(x)=\frac{4}{\frac{3}{x}-1}
|
domain of-1/x
|
domain\:-\frac{1}{x}
|
slope intercept of-1/3 (x-(5))
|
slope\:intercept\:-\frac{1}{3}(x-(5))
|
inverse of f(x)=(7\sqrt[5]{x}-5)/4
|
inverse\:f(x)=\frac{7\sqrt[5]{x}-5}{4}
|
slope intercept of 5x-4y=20
|
slope\:intercept\:5x-4y=20
|
inverse of f(x)=2x-2
|
inverse\:f(x)=2x-2
|
y=-(|x|-1)^2
|
y=-(\left|x\right|-1)^{2}
|
range of (9(2+sqrt(x)))/(4-x)
|
range\:\frac{9(2+\sqrt{x})}{4-x}
|
inverse of f(x)=log_{2}(x)
|
inverse\:f(x)=\log_{2}(x)
|
domain of 2/(x-3)
|
domain\:\frac{2}{x-3}
|
domain of f(x)=log_{2}(2-|2-x|)
|
domain\:f(x)=\log_{2}(2-|2-x|)
|
domain of sqrt(2-x)+sqrt(x+2)
|
domain\:\sqrt{2-x}+\sqrt{x+2}
|
asymptotes of f(x)=(x+1)/(2x-3)
|
asymptotes\:f(x)=\frac{x+1}{2x-3}
|
domain of 5/(x(x-3))
|
domain\:\frac{5}{x(x-3)}
|
midpoint (2,1)(6,3)
|
midpoint\:(2,1)(6,3)
|
critical points of f(x)=5(x-2)^{2/3}
|
critical\:points\:f(x)=5(x-2)^{\frac{2}{3}}
|
domain of f(x)=sqrt(-x^2-17x-72)
|
domain\:f(x)=\sqrt{-x^{2}-17x-72}
|
domain of f(x)=(7x)/(x(x^2-16))
|
domain\:f(x)=\frac{7x}{x(x^{2}-16)}
|
inverse of f(x)=3(2)^{x+1}-2
|
inverse\:f(x)=3(2)^{x+1}-2
|
domain of f(x)=sqrt((4-x^2)/(5-3x-2x^2))
|
domain\:f(x)=\sqrt{\frac{4-x^{2}}{5-3x-2x^{2}}}
|
asymptotes of f(x)=(1-5x)/(x+5)
|
asymptotes\:f(x)=\frac{1-5x}{x+5}
|
line (0.0183,0.1221)(0.293,2.059)
|
line\:(0.0183,0.1221)(0.293,2.059)
|
parallel 6x-7y=35
|
parallel\:6x-7y=35
|
midpoint (0,3)(-4,-5)
|
midpoint\:(0,3)(-4,-5)
|
domain of f(x)=(sqrt(x-2))/(2x-10)
|
domain\:f(x)=\frac{\sqrt{x-2}}{2x-10}
|
periodicity of f(x)=2cos(1/2 x+pi)
|
periodicity\:f(x)=2\cos(\frac{1}{2}x+\pi)
|
slope intercept of ,4x-3y=-17
|
slope\:intercept\:,4x-3y=-17
|
intercepts of f(x)=(3x)/(x+1)
|
intercepts\:f(x)=\frac{3x}{x+1}
|
intercepts of f(x)=(x-2)/(x-4)
|
intercepts\:f(x)=\frac{x-2}{x-4}
|
inverse of f(x)=sqrt(x^2-11x)
|
inverse\:f(x)=\sqrt{x^{2}-11x}
|
range of f(x)=(x-4)/(sqrt(x+2))
|
range\:f(x)=\frac{x-4}{\sqrt{x+2}}
|
intercepts of f(x)=-x^3-4x^2+8x
|
intercepts\:f(x)=-x^{3}-4x^{2}+8x
|
line (-4,0)(4,0)
|
line\:(-4,0)(4,0)
|
domain of (5+x)/(1-5x)
|
domain\:\frac{5+x}{1-5x}
|
domain of (x^2-8x+12)/(x^2-2x-24)
|
domain\:\frac{x^{2}-8x+12}{x^{2}-2x-24}
|
critical points of f(x)= x/(x^2+11x+28)
|
critical\:points\:f(x)=\frac{x}{x^{2}+11x+28}
|
extreme points of f(x)=cos(pi x)
|
extreme\:points\:f(x)=\cos(\pi\:x)
|
parity (tan(x))/x
|
parity\:\frac{\tan(x)}{x}
|
extreme points of f(x)=3sqrt(x-2)
|
extreme\:points\:f(x)=3\sqrt{x-2}
|
parity (tan(x^5))/(x^3)
|
parity\:\frac{\tan(x^{5})}{x^{3}}
|
domain of f(x)=(4x^2-5)/(2x^2+8)
|
domain\:f(x)=\frac{4x^{2}-5}{2x^{2}+8}
|
inverse of f(x)=2sqrt(x)-8
|
inverse\:f(x)=2\sqrt{x}-8
|
inverse of f(x)=(7x+3)/(x+8)
|
inverse\:f(x)=\frac{7x+3}{x+8}
|
intercepts of (x(x+3))/(x^2+x-6)
|
intercepts\:\frac{x(x+3)}{x^{2}+x-6}
|
parity f(x)=-x^4-2x-2<= x<= 0
|
parity\:f(x)=-x^{4}-2x-2\le\:x\le\:0
|
ln(x-1)
|
\ln(x-1)
|
critical points of f(x)=2cos(x)+sin(2x)
|
critical\:points\:f(x)=2\cos(x)+\sin(2x)
|
inverse of f(x)=4525
|
inverse\:f(x)=4525
|
inverse of f(x)=3-sqrt(x)
|
inverse\:f(x)=3-\sqrt{x}
|
parity csc(x)dx
|
parity\:\csc(x)dx
|
slope of y=12
|
slope\:y=12
|
domain of y=sqrt(-x+7)
|
domain\:y=\sqrt{-x+7}
|
range of f(x)= x/(9x+3)
|
range\:f(x)=\frac{x}{9x+3}
|
distance (2,8)(4,7)
|
distance\:(2,8)(4,7)
|
shift f(x)=-cos(1/2 (x+(pi)/2))
|
shift\:f(x)=-\cos(\frac{1}{2}(x+\frac{\pi}{2}))
|
midpoint (6,-6)(-7,8)
|
midpoint\:(6,-6)(-7,8)
|
midpoint (5,5)(2,10)
|
midpoint\:(5,5)(2,10)
|
extreme points of f(x)=(x^2)/(x-5)
|
extreme\:points\:f(x)=\frac{x^{2}}{x-5}
|
domain of f(x)=8x+12
|
domain\:f(x)=8x+12
|
asymptotes of f(x)= 4/(x+3)+2
|
asymptotes\:f(x)=\frac{4}{x+3}+2
|
slope of y= 1/3 x+3
|
slope\:y=\frac{1}{3}x+3
|
inflection points of x/(5+x^2)
|
inflection\:points\:\frac{x}{5+x^{2}}
|
inverse of g(x)=-x+3
|
inverse\:g(x)=-x+3
|
intercepts of f(x)=(x-1)
|
intercepts\:f(x)=(x-1)
|
domain of f(x)=arctan(x)
|
domain\:f(x)=\arctan(x)
|
domain of f(x)=sqrt(5x+25)
|
domain\:f(x)=\sqrt{5x+25}
|
asymptotes of f(x)=(3x^2-17x+24)/(6x-16)
|
asymptotes\:f(x)=\frac{3x^{2}-17x+24}{6x-16}
|
inverse of f(x)=-2x+6
|
inverse\:f(x)=-2x+6
|
critical points of (x^2)/(x^2-4)
|
critical\:points\:\frac{x^{2}}{x^{2}-4}
|
domain of f(x)= 5/(x-3)
|
domain\:f(x)=\frac{5}{x-3}
|
slope of x=7y
|
slope\:x=7y
|
extreme points of f(x)=x^3-x^2
|
extreme\:points\:f(x)=x^{3}-x^{2}
|
inverse of y= 1/(3x-2)
|
inverse\:y=\frac{1}{3x-2}
|
domain of f(n)=n\div (8-4n)
|
domain\:f(n)=n\div\:(8-4n)
|
parity f(x)=x^5+5x
|
parity\:f(x)=x^{5}+5x
|
inverse of f(x)=x^4-9
|
inverse\:f(x)=x^{4}-9
|
range of cos^{-1}(x)
|
range\:\cos^{-1}(x)
|
domain of 3x+1
|
domain\:3x+1
|
extreme points of f(x)=(x^4)/(x+12)
|
extreme\:points\:f(x)=\frac{x^{4}}{x+12}
|
inverse of (x+3)/(x-2)
|
inverse\:\frac{x+3}{x-2}
|
asymptotes of 1/(x+6)
|
asymptotes\:\frac{1}{x+6}
|
intercepts of f(x)=3x-5y=11
|
intercepts\:f(x)=3x-5y=11
|
domain of f(x)= 3/(sqrt(x+4))
|
domain\:f(x)=\frac{3}{\sqrt{x+4}}
|
domain of 2x+3
|
domain\:2x+3
|
amplitude of f(t)=2cos(t-(pi)/3)-1
|
amplitude\:f(t)=2\cos(t-\frac{\pi}{3})-1
|
range of 2sqrt(x+3)-5
|
range\:2\sqrt{x+3}-5
|
parity f(x)=sqrt(25-x^2)
|
parity\:f(x)=\sqrt{25-x^{2}}
|
inflection points of f(x)=x^4-16x^2
|
inflection\:points\:f(x)=x^{4}-16x^{2}
|
domain of f(x)= 3/(x+2)
|
domain\:f(x)=\frac{3}{x+2}
|
domain of 2x^3+5
|
domain\:2x^{3}+5
|
midpoint (3,-5)(5,9)
|
midpoint\:(3,-5)(5,9)
|
extreme points of f(x)=x^4-4x+1
|
extreme\:points\:f(x)=x^{4}-4x+1
|
midpoint (-3,1)(5,-3)
|
midpoint\:(-3,1)(5,-3)
|