intercepts of x^2+10x+24
|
intercepts\:x^{2}+10x+24
|
parity f(x)=-6x^5+3x^3
|
parity\:f(x)=-6x^{5}+3x^{3}
|
domain of f(x)=-3/2 x+1
|
domain\:f(x)=-\frac{3}{2}x+1
|
inverse of f(x)=3-3x
|
inverse\:f(x)=3-3x
|
slope intercept of y=-2/3 x+5
|
slope\:intercept\:y=-\frac{2}{3}x+5
|
range of f(x)=x^2+y^2=10
|
range\:f(x)=x^{2}+y^{2}=10
|
asymptotes of g(x)=3^x+6
|
asymptotes\:g(x)=3^{x}+6
|
domain of f(x)=(x+1)
|
domain\:f(x)=(x+1)
|
domain of g(x)=sqrt(-x)+3
|
domain\:g(x)=\sqrt{-x}+3
|
domain of sqrt(6x+18)
|
domain\:\sqrt{6x+18}
|
domain of f(x)=(3x-4)/(x^2-5x+10)
|
domain\:f(x)=\frac{3x-4}{x^{2}-5x+10}
|
inverse of f(x)=(x-3)/2
|
inverse\:f(x)=\frac{x-3}{2}
|
midpoint (5,-5)(1,1)
|
midpoint\:(5,-5)(1,1)
|
domain of sqrt(1-2x)
|
domain\:\sqrt{1-2x}
|
domain of x+sqrt(x-4)
|
domain\:x+\sqrt{x-4}
|
asymptotes of f(x)=(x+6)/(x^2-9x+18)
|
asymptotes\:f(x)=\frac{x+6}{x^{2}-9x+18}
|
inverse of f(x)=2x^2-20x+9
|
inverse\:f(x)=2x^{2}-20x+9
|
domain of-sqrt(9-x^2)
|
domain\:-\sqrt{9-x^{2}}
|
inverse of f(x)=-2.5sqrt(-x-1)+5
|
inverse\:f(x)=-2.5\sqrt{-x-1}+5
|
domain of f(x)= x/(sqrt(2x+8))
|
domain\:f(x)=\frac{x}{\sqrt{2x+8}}
|
inverse of f(x)=sqrt(3-x)
|
inverse\:f(x)=\sqrt{3-x}
|
inverse of sqrt(2-x)+7
|
inverse\:\sqrt{2-x}+7
|
domain of y=tan(x)
|
domain\:y=\tan(x)
|
shift sin(x+(pi)/4)
|
shift\:\sin(x+\frac{\pi}{4})
|
line m=3,\at (2,1)
|
line\:m=3,\at\:(2,1)
|
inverse of f(x)= 2/(x+2)-1
|
inverse\:f(x)=\frac{2}{x+2}-1
|
inverse of f(800)=50x+450
|
inverse\:f(800)=50x+450
|
domain of sqrt(4x-16)
|
domain\:\sqrt{4x-16}
|
domain of f(x)=(20x^2+x)/(x^2+9)
|
domain\:f(x)=\frac{20x^{2}+x}{x^{2}+9}
|
midpoint (3,-4)(5,8)
|
midpoint\:(3,-4)(5,8)
|
critical points of f(x)=x^3-3x+4
|
critical\:points\:f(x)=x^{3}-3x+4
|
extreme points of f(x)=x^4-x^5
|
extreme\:points\:f(x)=x^{4}-x^{5}
|
inverse of (x^2-16)/(8x^2)
|
inverse\:\frac{x^{2}-16}{8x^{2}}
|
range of sqrt(x^2+4)
|
range\:\sqrt{x^{2}+4}
|
inverse of f(x)=3x^{1/2}-9
|
inverse\:f(x)=3x^{\frac{1}{2}}-9
|
critical points of f(x)=(x^2)/(x^2-81)
|
critical\:points\:f(x)=\frac{x^{2}}{x^{2}-81}
|
inverse of f(x)= x/(2x+1)
|
inverse\:f(x)=\frac{x}{2x+1}
|
asymptotes of (x^3+4)/(x^2)
|
asymptotes\:\frac{x^{3}+4}{x^{2}}
|
domain of ln(1-x^2)
|
domain\:\ln(1-x^{2})
|
perpendicular x-6y=-3
|
perpendicular\:x-6y=-3
|
inverse of 5x-6
|
inverse\:5x-6
|
domain of sqrt(2x+1)
|
domain\:\sqrt{2x+1}
|
midpoint (-2,4)(5,0)
|
midpoint\:(-2,4)(5,0)
|
distance (0,-1)(8,7)
|
distance\:(0,-1)(8,7)
|
slope intercept of y=x-2
|
slope\:intercept\:y=x-2
|
line m=(-1)/4 \at ((12,-3))
|
line\:m=\frac{-1}{4}\at\:((12,-3))
|
slope of f(x)= 1/7 x+6
|
slope\:f(x)=\frac{1}{7}x+6
|
domain of y= 1/(3x-x^2)
|
domain\:y=\frac{1}{3x-x^{2}}
|
domain of sqrt((16-x^2)/(x+1))
|
domain\:\sqrt{\frac{16-x^{2}}{x+1}}
|
asymptotes of f(x)=x^3-8
|
asymptotes\:f(x)=x^{3}-8
|
inflection points of f(x)= x/(x^3-1)
|
inflection\:points\:f(x)=\frac{x}{x^{3}-1}
|
extreme points of xsqrt(36-x^2)
|
extreme\:points\:x\sqrt{36-x^{2}}
|
domain of f(x)=sqrt(17-5x)
|
domain\:f(x)=\sqrt{17-5x}
|
inverse of x^3-4
|
inverse\:x^{3}-4
|
domain of y=(x-1)/(x^2-9)
|
domain\:y=\frac{x-1}{x^{2}-9}
|
inverse of f(x)=((x+1))/((x+2))
|
inverse\:f(x)=\frac{(x+1)}{(x+2)}
|
range of (2x^2+2x-12)/(x^2+x)
|
range\:\frac{2x^{2}+2x-12}{x^{2}+x}
|
symmetry-x^2+x-5
|
symmetry\:-x^{2}+x-5
|
range of ((x+1))/(2x+1)
|
range\:\frac{(x+1)}{2x+1}
|
range of 8/(x+4)
|
range\:\frac{8}{x+4}
|
domain of f(x)=((5/x))/((5/x)+5)
|
domain\:f(x)=\frac{(\frac{5}{x})}{(\frac{5}{x})+5}
|
intercepts of f(x)=x^2-4x-12+1/(x^2)
|
intercepts\:f(x)=x^{2}-4x-12+\frac{1}{x^{2}}
|
asymptotes of (3x)\div ln(x)
|
asymptotes\:(3x)\div\:\ln(x)
|
domain of y=sqrt(2x-4)
|
domain\:y=\sqrt{2x-4}
|
critical points of (3x+1)/(3x)
|
critical\:points\:\frac{3x+1}{3x}
|
inverse of f(x)=(x-1)/x
|
inverse\:f(x)=\frac{x-1}{x}
|
inverse of 1/(s^2+9)
|
inverse\:\frac{1}{s^{2}+9}
|
shift 6sin(3x-pi)
|
shift\:6\sin(3x-\pi)
|
inverse of f(x)=x^2+8,x>= 0
|
inverse\:f(x)=x^{2}+8,x\ge\:0
|
domain of f(x)=-1/2
|
domain\:f(x)=-\frac{1}{2}
|
extreme points of f(x)=-5x^3-2x^4
|
extreme\:points\:f(x)=-5x^{3}-2x^{4}
|
inverse of f(x)=4x+9
|
inverse\:f(x)=4x+9
|
domain of (sqrt(4-x))/((x+1)(x^2+1))
|
domain\:\frac{\sqrt{4-x}}{(x+1)(x^{2}+1)}
|
range of f(x)=(x+20)^2-30
|
range\:f(x)=(x+20)^{2}-30
|
inverse of f(x)=\sqrt[3]{6x-5}
|
inverse\:f(x)=\sqrt[3]{6x-5}
|
inverse of ln(x+6)
|
inverse\:\ln(x+6)
|
intercepts of f(x)=y=2x-4
|
intercepts\:f(x)=y=2x-4
|
shift f(x)=cos(1/2 x)
|
shift\:f(x)=\cos(\frac{1}{2}x)
|
inverse of f(x)=-3/2 x+3
|
inverse\:f(x)=-\frac{3}{2}x+3
|
range of f(x)=x^2-6x+8
|
range\:f(x)=x^{2}-6x+8
|
parity f(x)=x^2|x|+5
|
parity\:f(x)=x^{2}|x|+5
|
domain of f(x)=-9x+3
|
domain\:f(x)=-9x+3
|
range of f(x)=2x-5
|
range\:f(x)=2x-5
|
inverse of (x+9)^2
|
inverse\:(x+9)^{2}
|
domain of f(x)=9x+24
|
domain\:f(x)=9x+24
|
range of x+3
|
range\:x+3
|
distance (0,0)(2,-1)
|
distance\:(0,0)(2,-1)
|
critical points of f(x)=3xsqrt(2x^2+4)
|
critical\:points\:f(x)=3x\sqrt{2x^{2}+4}
|
symmetry 3x^2+12x+9
|
symmetry\:3x^{2}+12x+9
|
domain of f(x)=(x/(x-1),(x-1)/x ,8x)
|
domain\:f(x)=(\frac{x}{x-1},\frac{x-1}{x},8x)
|
symmetry 4x-x^2+5
|
symmetry\:4x-x^{2}+5
|
range of sqrt(9-x^2)
|
range\:\sqrt{9-x^{2}}
|
critical points of f(x)=x^{7/3}-x^{4/3}
|
critical\:points\:f(x)=x^{\frac{7}{3}}-x^{\frac{4}{3}}
|
domain of f(x)=sqrt((x+2)/(3x-5))
|
domain\:f(x)=\sqrt{\frac{x+2}{3x-5}}
|
inverse of e^{ln(x)}
|
inverse\:e^{\ln(x)}
|
range of (0.052x)/(0.9+0.048x)
|
range\:\frac{0.052x}{0.9+0.048x}
|
inverse of f(x)=100-4x
|
inverse\:f(x)=100-4x
|
inverse of f(x)=(x^5-1)/3
|
inverse\:f(x)=\frac{x^{5}-1}{3}
|
inflection points of 3x^4-6x^2
|
inflection\:points\:3x^{4}-6x^{2}
|
intercepts of sin(3x)
|
intercepts\:\sin(3x)
|