extreme f(x)=x^3-3x^2+7x-10
|
extreme\:f(x)=x^{3}-3x^{2}+7x-10
|
extreme f(x)=-10x^2-40x-2
|
extreme\:f(x)=-10x^{2}-40x-2
|
minimum f(x)=x^3+x
|
minimum\:f(x)=x^{3}+x
|
f(x)=4x^2+y^2-8
|
f(x)=4x^{2}+y^{2}-8
|
minimum 10x^2-(250)/x
|
minimum\:10x^{2}-\frac{250}{x}
|
extreme f(x)=x^7(x+5)^8,-10<= x<= 10
|
extreme\:f(x)=x^{7}(x+5)^{8},-10\le\:x\le\:10
|
slope of y+5=6(x-3)
|
slope\:y+5=6(x-3)
|
extreme g(x)=x^3-9x
|
extreme\:g(x)=x^{3}-9x
|
extreme (x^2-1)^3,-1<= x<= 6
|
extreme\:(x^{2}-1)^{3},-1\le\:x\le\:6
|
extreme x*e^{-2x^2}
|
extreme\:x\cdot\:e^{-2x^{2}}
|
extreme f(x)=\sqrt[3]{x-1}+1
|
extreme\:f(x)=\sqrt[3]{x-1}+1
|
extreme f(x)=x^4+4x^3+10
|
extreme\:f(x)=x^{4}+4x^{3}+10
|
P(a,b)=3+2a^2b+4ab^2+8b^3
|
P(a,b)=3+2a^{2}b+4ab^{2}+8b^{3}
|
extreme f(x)=2x^3-30x^2+144x-11
|
extreme\:f(x)=2x^{3}-30x^{2}+144x-11
|
extreme f(x)=(-5x-4)/(6x^2+3)
|
extreme\:f(x)=\frac{-5x-4}{6x^{2}+3}
|
extreme f(x)=24sin(3x)
|
extreme\:f(x)=24\sin(3x)
|
extreme y=0.25x^4-(1/3)x^3
|
extreme\:y=0.25x^{4}-(\frac{1}{3})x^{3}
|
periodicity of 3sin(2x)
|
periodicity\:3\sin(2x)
|
extreme 6sqrt(x)
|
extreme\:6\sqrt{x}
|
extreme f(x,y)=3x^2+2y^2-6x+8y
|
extreme\:f(x,y)=3x^{2}+2y^{2}-6x+8y
|
extreme f(x)= 1/(x^2)+x^2
|
extreme\:f(x)=\frac{1}{x^{2}}+x^{2}
|
extreme e^{3x^2}
|
extreme\:e^{3x^{2}}
|
extreme f(x)=4-5x^2
|
extreme\:f(x)=4-5x^{2}
|
extreme f(x)=sqrt(12+x)+sqrt(24-x)
|
extreme\:f(x)=\sqrt{12+x}+\sqrt{24-x}
|
extreme f(x)=-1/12 x^3+x-1/3
|
extreme\:f(x)=-\frac{1}{12}x^{3}+x-\frac{1}{3}
|
slope of f(x)=3-5x
|
slope\:f(x)=3-5x
|
minimum y=sqrt((45-1x^2)^2+(5x)^2)
|
minimum\:y=\sqrt{(45-1x^{2})^{2}+(5x)^{2}}
|
extreme f(x,y)=2x^2+y^2-y
|
extreme\:f(x,y)=2x^{2}+y^{2}-y
|
f(x,y)= 1/2 x^2-xy+1/3 y^3
|
f(x,y)=\frac{1}{2}x^{2}-xy+\frac{1}{3}y^{3}
|
extreme f(x)=(-(1/2)x^4+2)/(3x^3-4)
|
extreme\:f(x)=\frac{-(\frac{1}{2})x^{4}+2}{3x^{3}-4}
|
extreme ((x-2)^3)/((x-4)^4)
|
extreme\:\frac{(x-2)^{3}}{(x-4)^{4}}
|
extreme f(x)=(4x^2)/(x-2),-2<= x<= 1
|
extreme\:f(x)=\frac{4x^{2}}{x-2},-2\le\:x\le\:1
|
extreme f(x)=ln(2x)-2x^2
|
extreme\:f(x)=\ln(2x)-2x^{2}
|
extreme f(x)=(x-6)^{2/3}
|
extreme\:f(x)=(x-6)^{\frac{2}{3}}
|
extreme (x^2+2)/(7x-4x^2)
|
extreme\:\frac{x^{2}+2}{7x-4x^{2}}
|
extreme f(x)=-10x^2+1620x-40000
|
extreme\:f(x)=-10x^{2}+1620x-40000
|
asymptotes of (3ln(x+1)+x^2-3x)/(1-e^x)
|
asymptotes\:\frac{3\ln(x+1)+x^{2}-3x}{1-e^{x}}
|
minimum x^3-9x^2+4
|
minimum\:x^{3}-9x^{2}+4
|
f(x,y)=x^3+y^3-6xy+27
|
f(x,y)=x^{3}+y^{3}-6xy+27
|
extreme f(x)=(2-x^2)^{3/2}
|
extreme\:f(x)=(2-x^{2})^{\frac{3}{2}}
|
extreme f(x)=(100ln(x+2))/(x+2)
|
extreme\:f(x)=\frac{100\ln(x+2)}{x+2}
|
extreme 3(e^{-0.8t}-e^{-1.2t})
|
extreme\:3(e^{-0.8t}-e^{-1.2t})
|
extreme f(x)=6x^2-8x+2
|
extreme\:f(x)=6x^{2}-8x+2
|
extreme f(x)=|2x+1|
|
extreme\:f(x)=\left|2x+1\right|
|
extreme 1/(|x|+1)
|
extreme\:\frac{1}{\left|x\right|+1}
|
inverse of f(x)=x+14
|
inverse\:f(x)=x+14
|
extreme f(x,y)=e^{2x}(x+y^2+2y)+10
|
extreme\:f(x,y)=e^{2x}(x+y^{2}+2y)+10
|
P(x,y)=x^2-y^2
|
P(x,y)=x^{2}-y^{2}
|
extreme f(x)=x*ln^2(x)
|
extreme\:f(x)=x\cdot\:\ln^{2}(x)
|
extreme f(x)=f(x,y)=x^3+y^3-3x^2-9y^2-9x
|
extreme\:f(x)=f(x,y)=x^{3}+y^{3}-3x^{2}-9y^{2}-9x
|
extreme 1/(x^3)
|
extreme\:\frac{1}{x^{3}}
|
extreme \sqrt[3]{x^2}
|
extreme\:\sqrt[3]{x^{2}}
|
extreme f(x)=(x-1)(x-2)^2(x-3)^5
|
extreme\:f(x)=(x-1)(x-2)^{2}(x-3)^{5}
|
extreme f(x)=-5-x-x^2
|
extreme\:f(x)=-5-x-x^{2}
|
f(x,y)=5x^2+5y^2-5xy-10x-5y+18
|
f(x,y)=5x^{2}+5y^{2}-5xy-10x-5y+18
|
extreme f(x)=355x^2-1420x^3
|
extreme\:f(x)=355x^{2}-1420x^{3}
|
extreme points of f(x)=x^2+9x-7
|
extreme\:points\:f(x)=x^{2}+9x-7
|
minimum f(x)= 1/2 x^4-4x^2+2
|
minimum\:f(x)=\frac{1}{2}x^{4}-4x^{2}+2
|
extreme 6+9x^2-6x^3
|
extreme\:6+9x^{2}-6x^{3}
|
extreme f(x)=5x^4-x^5+5
|
extreme\:f(x)=5x^{4}-x^{5}+5
|
extreme f(x)=2x+4sin(x)
|
extreme\:f(x)=2x+4\sin(x)
|
extreme f(x)=x^2-6x-8
|
extreme\:f(x)=x^{2}-6x-8
|
extreme f(x)=6x^2-6
|
extreme\:f(x)=6x^{2}-6
|
extreme 24x^3-24x^2
|
extreme\:24x^{3}-24x^{2}
|
extreme f(x)=4x^3-16
|
extreme\:f(x)=4x^{3}-16
|
extreme f(x)=ye^{(x^2-2y^2)}
|
extreme\:f(x)=ye^{(x^{2}-2y^{2})}
|
extreme f(x)=-7x^{5/3}+2\sqrt[3]{x}
|
extreme\:f(x)=-7x^{\frac{5}{3}}+2\sqrt[3]{x}
|
range of y=sqrt(x-5)
|
range\:y=\sqrt{x-5}
|
extreme points of f(x)= 1/3 x^3-2x^2
|
extreme\:points\:f(x)=\frac{1}{3}x^{3}-2x^{2}
|
f(x,y)=x^2-xy+2y^2
|
f(x,y)=x^{2}-xy+2y^{2}
|
extreme f(x,y)=y^3-3x^2y-3y^2-3x^2+1
|
extreme\:f(x,y)=y^{3}-3x^{2}y-3y^{2}-3x^{2}+1
|
extreme f(x)=2sin(x)+cos(2x)
|
extreme\:f(x)=2\sin(x)+\cos(2x)
|
extreme f(x,y)=2x^2-4y+y^2
|
extreme\:f(x,y)=2x^{2}-4y+y^{2}
|
extreme f(x)=2-5x+x^2
|
extreme\:f(x)=2-5x+x^{2}
|
f(x,y)=33x+66y+xy-x^2-3y^2
|
f(x,y)=33x+66y+xy-x^{2}-3y^{2}
|
extreme f(x)=3x+4sqrt(32.5-x^2)
|
extreme\:f(x)=3x+4\sqrt{32.5-x^{2}}
|
extreme 8x^2-8x^4
|
extreme\:8x^{2}-8x^{4}
|
extreme f(x)=6x^2-10y^2
|
extreme\:f(x)=6x^{2}-10y^{2}
|
extreme f(x)=x^4-4x-6
|
extreme\:f(x)=x^{4}-4x-6
|
parity 2sec(x)dx
|
parity\:2\sec(x)dx
|
extreme f(x,y)=x^3+y^3-12x-15y
|
extreme\:f(x,y)=x^{3}+y^{3}-12x-15y
|
extreme f(x)=(x+6)/(x-3)
|
extreme\:f(x)=\frac{x+6}{x-3}
|
extreme y=4x-9x^{4/9}
|
extreme\:y=4x-9x^{\frac{4}{9}}
|
extreme f(x)=2x^3+3x^2-72x+1,-4<= x<= 7
|
extreme\:f(x)=2x^{3}+3x^{2}-72x+1,-4\le\:x\le\:7
|
extreme x^3+3x^2+9x
|
extreme\:x^{3}+3x^{2}+9x
|
extreme f(x)=((x^2))/(x^2+243)
|
extreme\:f(x)=\frac{(x^{2})}{x^{2}+243}
|
extreme f(x)=sec^2(x)-2sqrt(3)tan(x)
|
extreme\:f(x)=\sec^{2}(x)-2\sqrt{3}\tan(x)
|
extreme f(x)=4x^3-12x^2-96x+9
|
extreme\:f(x)=4x^{3}-12x^{2}-96x+9
|
extreme f(x)=4x^3-12x^2-96x+7
|
extreme\:f(x)=4x^{3}-12x^{2}-96x+7
|
inflection points of f(x)=x^4-8x^2+3
|
inflection\:points\:f(x)=x^{4}-8x^{2}+3
|
f(x,y)=sqrt(-25x^2+250x-y^2+8y-637)
|
f(x,y)=\sqrt{-25x^{2}+250x-y^{2}+8y-637}
|
f(x,y)=5x^2y-5xy^3+4y^3
|
f(x,y)=5x^{2}y-5xy^{3}+4y^{3}
|
extreme f(x)=12x-6
|
extreme\:f(x)=12x-6
|
extreme f(x)=x^3-3x+xy^2
|
extreme\:f(x)=x^{3}-3x+xy^{2}
|
extreme f(x)=x+(16)/x+6,1<= x<= 32
|
extreme\:f(x)=x+\frac{16}{x}+6,1\le\:x\le\:32
|
extreme f(x)=3x^2-4x+1,0<= x<= 2
|
extreme\:f(x)=3x^{2}-4x+1,0\le\:x\le\:2
|
extreme f(x)=-x^2-3
|
extreme\:f(x)=-x^{2}-3
|
extreme f(x)=5+2x-2x^2
|
extreme\:f(x)=5+2x-2x^{2}
|
f(xy)=2xy-x^2-2y^2+3x+4
|
f(xy)=2xy-x^{2}-2y^{2}+3x+4
|
extreme f(x)=2x^3+3x^2-36x+17
|
extreme\:f(x)=2x^{3}+3x^{2}-36x+17
|