asymptotes of x^2+5x-3600
|
asymptotes\:x^{2}+5x-3600
|
extreme f(x)=x^3+2x^2-7x[0.2]
|
extreme\:f(x)=x^{3}+2x^{2}-7x[0.2]
|
T(x,y)=26-9x^2-9y^2
|
T(x,y)=26-9x^{2}-9y^{2}
|
extreme y=6x^2-30x+9
|
extreme\:y=6x^{2}-30x+9
|
extreme f(x)=-15-7x-x^2
|
extreme\:f(x)=-15-7x-x^{2}
|
f(x,y)=sqrt(-x^2+1)-sqrt(-y^2+1)
|
f(x,y)=\sqrt{-x^{2}+1}-\sqrt{-y^{2}+1}
|
F(x,y)=3x^2y-2xy^2+x+C
|
F(x,y)=3x^{2}y-2xy^{2}+x+C
|
extreme f(x)=(2x)^x
|
extreme\:f(x)=(2x)^{x}
|
extreme (7z+6)/(z-7)+(7z+3)/(z-7)
|
extreme\:\frac{7z+6}{z-7}+\frac{7z+3}{z-7}
|
extreme f(x)=((4x-7))/(x+3)
|
extreme\:f(x)=\frac{(4x-7)}{x+3}
|
extreme (2x^2-12x-54)/(2x^2+13x+21)
|
extreme\:\frac{2x^{2}-12x-54}{2x^{2}+13x+21}
|
critical points of sin(x+5/2)
|
critical\:points\:\sin(x+\frac{5}{2})
|
extreme f(x)=4x^3-6x^2,-1<= x<= 1
|
extreme\:f(x)=4x^{3}-6x^{2},-1\le\:x\le\:1
|
extreme f(x)=(10x)/(3x^2+3)
|
extreme\:f(x)=\frac{10x}{3x^{2}+3}
|
extreme f(x)=(x-4)^2+(y-4)^2-4/(sqrt(5))
|
extreme\:f(x)=(x-4)^{2}+(y-4)^{2}-\frac{4}{\sqrt{5}}
|
minimum 3x^4+7x^3-18^2-32
|
minimum\:3x^{4}+7x^{3}-18^{2}-32
|
extreme f(x)=0.2x^2-20x+900
|
extreme\:f(x)=0.2x^{2}-20x+900
|
minimum 14+4x-x^2
|
minimum\:14+4x-x^{2}
|
extreme f(x)=-x(x+1)
|
extreme\:f(x)=-x(x+1)
|
minimum f(x,y)=x^4+y^4-xy
|
minimum\:f(x,y)=x^{4}+y^{4}-xy
|
extreme f(x,y)=x^2+y^2-3xy^2
|
extreme\:f(x,y)=x^{2}+y^{2}-3xy^{2}
|
extreme f(x)=x^3+5x^2-8x+1
|
extreme\:f(x)=x^{3}+5x^{2}-8x+1
|
domain of f(x)=2(x-2)^2-3
|
domain\:f(x)=2(x-2)^{2}-3
|
extreme f(x)=7x^{8/3}
|
extreme\:f(x)=7x^{\frac{8}{3}}
|
minimum 6/x+3/y+14x+5y
|
minimum\:\frac{6}{x}+\frac{3}{y}+14x+5y
|
extreme y=x-sin(-x),0<= x<= 2pi
|
extreme\:y=x-\sin(-x),0\le\:x\le\:2π
|
extreme x^2(2-x)^3
|
extreme\:x^{2}(2-x)^{3}
|
extreme f(x,y)=2x^2-5y^2+6y
|
extreme\:f(x,y)=2x^{2}-5y^{2}+6y
|
f(x,y)=(x+y)
|
f(x,y)=(x+y)
|
extreme f(x)=y^3-3xy+x^3
|
extreme\:f(x)=y^{3}-3xy+x^{3}
|
extreme cos(4x)
|
extreme\:\cos(4x)
|
extreme f(x)=(x-4)^3
|
extreme\:f(x)=(x-4)^{3}
|
parity f(x)=-9x-x^7
|
parity\:f(x)=-9x-x^{7}
|
extreme-2x^2+324ln(x)
|
extreme\:-2x^{2}+324\ln(x)
|
f(x,y)=x^2-2y^2+4
|
f(x,y)=x^{2}-2y^{2}+4
|
extreme f(x)=-2x^2+8x-6
|
extreme\:f(x)=-2x^{2}+8x-6
|
extreme 1/(x^2+2x+9)
|
extreme\:\frac{1}{x^{2}+2x+9}
|
extreme f(x,y)=x^2+4y^2-x+2y
|
extreme\:f(x,y)=x^{2}+4y^{2}-x+2y
|
extreme f(x)=-7/(x^2+1)
|
extreme\:f(x)=-\frac{7}{x^{2}+1}
|
extreme f(x)= x/(25-x+x^2)
|
extreme\:f(x)=\frac{x}{25-x+x^{2}}
|
extreme f(x)=(x^2-25)^2
|
extreme\:f(x)=(x^{2}-25)^{2}
|
f(x,y)=x^2+2y^2-x+3
|
f(x,y)=x^{2}+2y^{2}-x+3
|
extreme (x^2+12)(144-x^2)
|
extreme\:(x^{2}+12)(144-x^{2})
|
range of arcsec(x)
|
range\:\arcsec(x)
|
extreme f(x)=(10x^3)/3-(11x^2)/2+x+2
|
extreme\:f(x)=\frac{10x^{3}}{3}-\frac{11x^{2}}{2}+x+2
|
extreme 5+4x^2-x^4
|
extreme\:5+4x^{2}-x^{4}
|
extreme f(x)=x^2+3,-1<= x<= 4
|
extreme\:f(x)=x^{2}+3,-1\le\:x\le\:4
|
extreme f(x,y)=5x+5y
|
extreme\:f(x,y)=5x+5y
|
extreme f(x)= 1/4 (-4x^3+2x^2+12)
|
extreme\:f(x)=\frac{1}{4}(-4x^{3}+2x^{2}+12)
|
f(x,y)=x^2-2y^2+8x-3y+1
|
f(x,y)=x^{2}-2y^{2}+8x-3y+1
|
extreme f(2)= x/(e^{-x)}
|
extreme\:f(2)=\frac{x}{e^{-x}}
|
extreme f(x)=5sin(x)cos(x),(-pi,pi)
|
extreme\:f(x)=5\sin(x)\cos(x),(-π,π)
|
y=j+x
|
y=j+x
|
f(x,y)=2x^2+y^2-2xy+5x-3y+1
|
f(x,y)=2x^{2}+y^{2}-2xy+5x-3y+1
|
extreme points of x^3-3x^2-9x
|
extreme\:points\:x^{3}-3x^{2}-9x
|
extreme f(x)=(x^2+2)/(x^2-4x)
|
extreme\:f(x)=\frac{x^{2}+2}{x^{2}-4x}
|
extreme f(x)=x^5-10x^4
|
extreme\:f(x)=x^{5}-10x^{4}
|
extreme f(x)=x^7ln(x)
|
extreme\:f(x)=x^{7}\ln(x)
|
extreme f(x)= 1/3 x^3+11/2 x^2+24x+1
|
extreme\:f(x)=\frac{1}{3}x^{3}+\frac{11}{2}x^{2}+24x+1
|
extreme f(x)=x^4(x+2)^2
|
extreme\:f(x)=x^{4}(x+2)^{2}
|
y(C,x)=Ce^{-ax}
|
y(C,x)=Ce^{-ax}
|
f(y,x)=(500)/(4+x^2+y^2)
|
f(y,x)=\frac{500}{4+x^{2}+y^{2}}
|
minimum f(x)=x^5ln(x)
|
minimum\:f(x)=x^{5}\ln(x)
|
extreme f(x)=(x-1)\sqrt[3]{x^2}
|
extreme\:f(x)=(x-1)\sqrt[3]{x^{2}}
|
domain of (1+sqrt(1-x))/(1-sqrt(1+x))
|
domain\:\frac{1+\sqrt{1-x}}{1-\sqrt{1+x}}
|
extreme f(x)=(x+3)/(x^2-4x-21)
|
extreme\:f(x)=\frac{x+3}{x^{2}-4x-21}
|
extreme 2.5x^2+75x+25000
|
extreme\:2.5x^{2}+75x+25000
|
extreme f(x)=(100-2x)*(75-2x)*x
|
extreme\:f(x)=(100-2x)\cdot\:(75-2x)\cdot\:x
|
extreme f(x)=5xsqrt(x-x^2)
|
extreme\:f(x)=5x\sqrt{x-x^{2}}
|
extreme f(x)=x^2-72ln(x)
|
extreme\:f(x)=x^{2}-72\ln(x)
|
extreme f(x)=x^{(2/3)}
|
extreme\:f(x)=x^{(\frac{2}{3})}
|
extreme f(x)=((x+4))/(x^2-3x-28)
|
extreme\:f(x)=\frac{(x+4)}{x^{2}-3x-28}
|
f(x,y)=3x+5y+2
|
f(x,y)=3x+5y+2
|
extreme f(x)=(2x^2-x-2)/(x+1)
|
extreme\:f(x)=\frac{2x^{2}-x-2}{x+1}
|
extreme f(x)=x^3-6x^2+9x,0<= x<= 2
|
extreme\:f(x)=x^{3}-6x^{2}+9x,0\le\:x\le\:2
|
slope intercept of (4x-2y)/2 =x+1
|
slope\:intercept\:\frac{4x-2y}{2}=x+1
|
inverse of 1/(x+7)
|
inverse\:\frac{1}{x+7}
|
extreme f(x)=(x-2)(x+1)^3
|
extreme\:f(x)=(x-2)(x+1)^{3}
|
f(x,y)=2x^2y-2x^2-y^2
|
f(x,y)=2x^{2}y-2x^{2}-y^{2}
|
extreme f(x)=6x^2+7y^2
|
extreme\:f(x)=6x^{2}+7y^{2}
|
extreme f(x)=-5x^2+10x+12
|
extreme\:f(x)=-5x^{2}+10x+12
|
extreme 14400+700x+x^2
|
extreme\:14400+700x+x^{2}
|
f(x,y)=-8-6x+3x^2+8y+5y^2
|
f(x,y)=-8-6x+3x^{2}+8y+5y^{2}
|
extreme f(x)=(4+x)/(1-x),-1<= x<= 0
|
extreme\:f(x)=\frac{4+x}{1-x},-1\le\:x\le\:0
|
extreme f(x)=2x^3-3x^2-72x+3,-4<= x<= 5
|
extreme\:f(x)=2x^{3}-3x^{2}-72x+3,-4\le\:x\le\:5
|
extreme (xy)/(e^{x^2+y^2)}
|
extreme\:\frac{xy}{e^{x^{2}+y^{2}}}
|
extreme points of f(x)=(7x)/(x^2+49)
|
extreme\:points\:f(x)=\frac{7x}{x^{2}+49}
|
f(x)=4y^3+x^2-12y-36y+2
|
f(x)=4y^{3}+x^{2}-12y-36y+2
|
extreme sqrt(x)ln(2x)
|
extreme\:\sqrt{x}\ln(2x)
|
extreme f(x)= 3/(x+7)
|
extreme\:f(x)=\frac{3}{x+7}
|
extreme f(x)=5-3x+x^2
|
extreme\:f(x)=5-3x+x^{2}
|
extreme f(x)=x^3-12x+y^3-3y
|
extreme\:f(x)=x^{3}-12x+y^{3}-3y
|
extreme f(x)=0.1x^3-15x^2+72x+1
|
extreme\:f(x)=0.1x^{3}-15x^{2}+72x+1
|
extreme f(t)=(t^2-t+1)/(t^2+1)
|
extreme\:f(t)=\frac{t^{2}-t+1}{t^{2}+1}
|
extreme f(x)=3x^3-2x+1
|
extreme\:f(x)=3x^{3}-2x+1
|
extreme xe^{-6x^2}
|
extreme\:xe^{-6x^{2}}
|
domain of f(x)=sqrt((x-1)/(x^2-9))
|
domain\:f(x)=\sqrt{\frac{x-1}{x^{2}-9}}
|
extreme f(x)=x^4-8x^3+10x^2+1
|
extreme\:f(x)=x^{4}-8x^{3}+10x^{2}+1
|
extreme-15x^4+120x^2
|
extreme\:-15x^{4}+120x^{2}
|
extreme 3(x-2)^2(x-1)+(x-2)^2
|
extreme\:3(x-2)^{2}(x-1)+(x-2)^{2}
|