extreme 1
|
extreme\:1
|
range of f(x)=x^2-x+3
|
range\:f(x)=x^{2}-x+3
|
extreme f(x)=-3x^4+4x^3+72x^2
|
extreme\:f(x)=-3x^{4}+4x^{3}+72x^{2}
|
extreme f(x,y)=16-x^2-y^2
|
extreme\:f(x,y)=16-x^{2}-y^{2}
|
extreme f(x)=(x^2-1)/x
|
extreme\:f(x)=\frac{x^{2}-1}{x}
|
extreme f(x)=(x-6)/(x^2-16),0<= x<4
|
extreme\:f(x)=\frac{x-6}{x^{2}-16},0\le\:x<4
|
minimum (4-x)4^x
|
minimum\:(4-x)4^{x}
|
extreme x^2+2/x
|
extreme\:x^{2}+\frac{2}{x}
|
extreme x^3-3/2 x^2,-1<= x<= 4
|
extreme\:x^{3}-\frac{3}{2}x^{2},-1\le\:x\le\:4
|
extreme f(x)=ln(x^2+3x+12)
|
extreme\:f(x)=\ln(x^{2}+3x+12)
|
extreme f(x)=x^3-6x^2+9x+7
|
extreme\:f(x)=x^{3}-6x^{2}+9x+7
|
extreme 1-2/(x^2+1)
|
extreme\:1-\frac{2}{x^{2}+1}
|
inverse of f(x)=(7-x)^2
|
inverse\:f(x)=(7-x)^{2}
|
extreme g(x)=2x^3-6x+3,-2<= x<= 2
|
extreme\:g(x)=2x^{3}-6x+3,-2\le\:x\le\:2
|
extreme x((200-x)/2)
|
extreme\:x(\frac{200-x}{2})
|
extreme f(x)=4x^5+10x^4-100x^3+1
|
extreme\:f(x)=4x^{5}+10x^{4}-100x^{3}+1
|
extreme 5x(2x+4)-3x
|
extreme\:5x(2x+4)-3x
|
extreme f(x)=-4x^2+48x-108
|
extreme\:f(x)=-4x^{2}+48x-108
|
extreme f(x)=3x-5x^2,(-infinity <x<= 2)
|
extreme\:f(x)=3x-5x^{2},(-\infty\:<x\le\:2)
|
extreme f(x)=5(10-x)+3(sqrt(16+x^2))
|
extreme\:f(x)=5(10-x)+3(\sqrt{16+x^{2}})
|
extreme 13x^2-x^3
|
extreme\:13x^{2}-x^{3}
|
extreme f(x)=2+12x-x^2
|
extreme\:f(x)=2+12x-x^{2}
|
extreme f(x)=(x-3)(x+1)(x+4)
|
extreme\:f(x)=(x-3)(x+1)(x+4)
|
intercepts of f(x)=(6x)/(x^2-4)
|
intercepts\:f(x)=\frac{6x}{x^{2}-4}
|
extreme f(x)=ln(13-9x^2+2x^4),x=1
|
extreme\:f(x)=\ln(13-9x^{2}+2x^{4}),x=1
|
extreme f(x)=x^3-5x^2+7x-3
|
extreme\:f(x)=x^{3}-5x^{2}+7x-3
|
extreme f(x)=3x^2-4y^3-6x+48y-1
|
extreme\:f(x)=3x^{2}-4y^{3}-6x+48y-1
|
extreme f(x)=x^2+y^2-8x+y
|
extreme\:f(x)=x^{2}+y^{2}-8x+y
|
extreme f(x)=12x^3-9x^2-108x+4
|
extreme\:f(x)=12x^{3}-9x^{2}-108x+4
|
minimum f(x)=3x^2+6x-6
|
minimum\:f(x)=3x^{2}+6x-6
|
extreme f(x)=3x-3
|
extreme\:f(x)=3x-3
|
extreme f(x)=-x^3-x^2+5x+1
|
extreme\:f(x)=-x^{3}-x^{2}+5x+1
|
extreme (30)/x+3pix^2
|
extreme\:\frac{30}{x}+3πx^{2}
|
critical points of f(x)=-(2/(x^2+1))
|
critical\:points\:f(x)=-(\frac{2}{x^{2}+1})
|
extreme y=-x^3+6x^2
|
extreme\:y=-x^{3}+6x^{2}
|
f(x,y)=-3x^2+2xy-y^2+14x+2y+10
|
f(x,y)=-3x^{2}+2xy-y^{2}+14x+2y+10
|
extreme f(x)=x^2log_{6}(x)
|
extreme\:f(x)=x^{2}\log_{6}(x)
|
extreme y=(ln(x))/(x^4)
|
extreme\:y=\frac{\ln(x)}{x^{4}}
|
extreme 250+8x^3+x^4
|
extreme\:250+8x^{3}+x^{4}
|
minimum f(x)=2x^3+24x+5
|
minimum\:f(x)=2x^{3}+24x+5
|
extreme f(x)=e^{3x^2+8y^2+13}
|
extreme\:f(x)=e^{3x^{2}+8y^{2}+13}
|
extreme (3x)/(x^2+1)
|
extreme\:\frac{3x}{x^{2}+1}
|
extreme f(x)=-34x^2+550x
|
extreme\:f(x)=-34x^{2}+550x
|
extreme f(x)=sqrt(x)ln(9x),(0,infinity)
|
extreme\:f(x)=\sqrt{x}\ln(9x),(0,\infty\:)
|
domain of f(x)= 1/(sqrt(1+2x))
|
domain\:f(x)=\frac{1}{\sqrt{1+2x}}
|
extreme x^4-2x^3+x+1
|
extreme\:x^{4}-2x^{3}+x+1
|
extreme-(8*x)/(x^2+1)
|
extreme\:-\frac{8\cdot\:x}{x^{2}+1}
|
extreme (x^2)/(x^2-36)
|
extreme\:\frac{x^{2}}{x^{2}-36}
|
extreme f(x)=-e^x+15e^{x/(14)}
|
extreme\:f(x)=-e^{x}+15e^{\frac{x}{14}}
|
extreme f(x)=x^2-y^2-5x-4y
|
extreme\:f(x)=x^{2}-y^{2}-5x-4y
|
extreme 20q-2q^2
|
extreme\:20q-2q^{2}
|
extreme f(x)= 1/(x-2),0<= x<= 1
|
extreme\:f(x)=\frac{1}{x-2},0\le\:x\le\:1
|
extreme f(r)=(r-8)^3
|
extreme\:f(r)=(r-8)^{3}
|
extreme f(x)=-x^3+4x^2
|
extreme\:f(x)=-x^{3}+4x^{2}
|
extreme f(x)=y=-(x+4)^2+8
|
extreme\:f(x)=y=-(x+4)^{2}+8
|
midpoint (0,1)(1,-1)
|
midpoint\:(0,1)(1,-1)
|
f(x,y)=2x-y-x^2+2xy-y
|
f(x,y)=2x-y-x^{2}+2xy-y
|
extreme f(x,y)=3xy-5x-2y+1
|
extreme\:f(x,y)=3xy-5x-2y+1
|
f(x,y)=(3y^2-x^2)e^{2x}
|
f(x,y)=(3y^{2}-x^{2})e^{2x}
|
extreme f(x)=-2x^2-2y^2+20x+16y+4
|
extreme\:f(x)=-2x^{2}-2y^{2}+20x+16y+4
|
extreme f(x)=x^2-sqrt(2x)+1/2
|
extreme\:f(x)=x^{2}-\sqrt{2x}+\frac{1}{2}
|
minimum 1/3 x^3-1/2 x^2-2x
|
minimum\:\frac{1}{3}x^{3}-\frac{1}{2}x^{2}-2x
|
extreme f(x,y)=x^3-y^3-3xy
|
extreme\:f(x,y)=x^{3}-y^{3}-3xy
|
extreme f(x)=sqrt(x^2+y^2+1)
|
extreme\:f(x)=\sqrt{x^{2}+y^{2}+1}
|
intercepts of 15x^{2/3}-10x
|
intercepts\:15x^{\frac{2}{3}}-10x
|
extreme f(x)=3x^2+2x^3
|
extreme\:f(x)=3x^{2}+2x^{3}
|
extreme f(x)=-5x^2+50x-80
|
extreme\:f(x)=-5x^{2}+50x-80
|
extreme f(x)=1-7x^2
|
extreme\:f(x)=1-7x^{2}
|
extreme f(x)=-12x^2+24x
|
extreme\:f(x)=-12x^{2}+24x
|
extreme f(x)=4x+4sin(x)
|
extreme\:f(x)=4x+4\sin(x)
|
x=2w(t)
|
x=2w(t)
|
extreme f(x)=x^{2/9}(2x+11)
|
extreme\:f(x)=x^{\frac{2}{9}}(2x+11)
|
extreme (-x^6-5x^3+5x)/(x^2+2)
|
extreme\:\frac{-x^{6}-5x^{3}+5x}{x^{2}+2}
|
extreme f(x)=x^3-3x^2-9x+1,-2<= x<= 2
|
extreme\:f(x)=x^{3}-3x^{2}-9x+1,-2\le\:x\le\:2
|
range of f(x)=log_{2}(x+5)
|
range\:f(x)=\log_{2}(x+5)
|
extreme f(x)=sqrt(x)ln(8x),(0,infinity)
|
extreme\:f(x)=\sqrt{x}\ln(8x),(0,\infty\:)
|
f(x,y)=3x^3-12xy+y^3
|
f(x,y)=3x^{3}-12xy+y^{3}
|
extreme f(x)=19+2x-x^2,0<= x<= 5
|
extreme\:f(x)=19+2x-x^{2},0\le\:x\le\:5
|
extreme f(x)= 1/x-2/(x^2),2<= x<=-1
|
extreme\:f(x)=\frac{1}{x}-\frac{2}{x^{2}},2\le\:x\le\:-1
|
extreme f(x)=2x^3+3x^2-2x-0
|
extreme\:f(x)=2x^{3}+3x^{2}-2x-0
|
extreme f(x)=2x^3+3x^2-2x-1
|
extreme\:f(x)=2x^{3}+3x^{2}-2x-1
|
extreme f(x)=(4x^2+12)/(x-1)
|
extreme\:f(x)=\frac{4x^{2}+12}{x-1}
|
f(x,y)=4y^2e^y+6x^2
|
f(x,y)=4y^{2}e^{y}+6x^{2}
|
domain of \sqrt[3]{x-4}
|
domain\:\sqrt[3]{x-4}
|
symmetry f(x)= 5/(x+1)-3
|
symmetry\:f(x)=\frac{5}{x+1}-3
|
extreme f(x)=x^4-2x^2+x-2
|
extreme\:f(x)=x^{4}-2x^{2}+x-2
|
extreme f(x)=x^2-2x-9,0<= x<= 3
|
extreme\:f(x)=x^{2}-2x-9,0\le\:x\le\:3
|
extreme f(x)=tan((pix)/(32)),0<= x<= 8
|
extreme\:f(x)=\tan(\frac{πx}{32}),0\le\:x\le\:8
|
minimum 3x^3+9x^2+27x-21
|
minimum\:3x^{3}+9x^{2}+27x-21
|
f(x,y)=5xln(1y-9)+5y-5
|
f(x,y)=5x\ln(1y-9)+5y-5
|
extreme f(x)=x^3-12x^2+21x-8
|
extreme\:f(x)=x^{3}-12x^{2}+21x-8
|
extreme f(x)=x^3-12x+5,-6<= x<= 6
|
extreme\:f(x)=x^{3}-12x+5,-6\le\:x\le\:6
|
extreme f(x)=sqrt(x^2+x)-x
|
extreme\:f(x)=\sqrt{x^{2}+x}-x
|
extreme f(x)=3x+3sin(x)
|
extreme\:f(x)=3x+3\sin(x)
|
extreme 6/(x^2+3)
|
extreme\:\frac{6}{x^{2}+3}
|
domain of g(y)=sqrt(2y+15)
|
domain\:g(y)=\sqrt{2y+15}
|
extreme f(x)=0.25x^2+x+2,(x>= 0)
|
extreme\:f(x)=0.25x^{2}+x+2,(x\ge\:0)
|
extreme f(x)=(x^3)/3-x
|
extreme\:f(x)=\frac{x^{3}}{3}-x
|
extreme f(x)=x^4-50x^2+1,-4<= x<= 11
|
extreme\:f(x)=x^{4}-50x^{2}+1,-4\le\:x\le\:11
|
extreme f(x)=(16)/(x^2+4)
|
extreme\:f(x)=\frac{16}{x^{2}+4}
|