minimum f(x)= 1/2 (x+4)^2+6
|
minimum\:f(x)=\frac{1}{2}(x+4)^{2}+6
|
inverse of 3x-2
|
inverse\:3x-2
|
extreme f(x)=-0.3x^2+2.4x+98.8
|
extreme\:f(x)=-0.3x^{2}+2.4x+98.8
|
extreme 2/(x+3)-1
|
extreme\:\frac{2}{x+3}-1
|
extreme f(x,y)=xy+e^{xy}
|
extreme\:f(x,y)=xy+e^{xy}
|
f(x,y)=x^3+3*x*y-y^2
|
f(x,y)=x^{3}+3\cdot\:x\cdot\:y-y^{2}
|
extreme f(x)=4ln(2xe^{-x})
|
extreme\:f(x)=4\ln(2xe^{-x})
|
extreme f(x)=2x^3-3x+6
|
extreme\:f(x)=2x^{3}-3x+6
|
extreme f(x)=(y-3)/(y^2-3y+9)
|
extreme\:f(x)=\frac{y-3}{y^{2}-3y+9}
|
extreme f(x)=(16-x)(100x+1300)
|
extreme\:f(x)=(16-x)(100x+1300)
|
slope intercept of x-2y=-2
|
slope\:intercept\:x-2y=-2
|
extreme f(x)= 1/(3x^{2/3)}
|
extreme\:f(x)=\frac{1}{3x^{\frac{2}{3}}}
|
extreme (2x-3)/x
|
extreme\:\frac{2x-3}{x}
|
extreme f(x)=x^3-x^2-x+6,-1<= x<= 2
|
extreme\:f(x)=x^{3}-x^{2}-x+6,-1\le\:x\le\:2
|
extreme f(x)=3x^5-17x^3+12x^2-3x+pi
|
extreme\:f(x)=3x^{5}-17x^{3}+12x^{2}-3x+π
|
extreme f(x)=x+3(1-x)^{1/3}
|
extreme\:f(x)=x+3(1-x)^{\frac{1}{3}}
|
extreme {1-4x:x<= 0,x+1:x>0}
|
extreme\:\left\{1-4x:x\le\:0,x+1:x>0\right\}
|
extreme f(x)=7x-x^2+18
|
extreme\:f(x)=7x-x^{2}+18
|
minimum 10+sqrt(x^2+6x+10)
|
minimum\:10+\sqrt{x^{2}+6x+10}
|
extreme f(x,y)=x^3-3x^2+3y^2-y^3
|
extreme\:f(x,y)=x^{3}-3x^{2}+3y^{2}-y^{3}
|
midpoint (1,2)(-9,4)
|
midpoint\:(1,2)(-9,4)
|
extreme f(x)=(ln(x))/(3x),1<= x<= 4
|
extreme\:f(x)=\frac{\ln(x)}{3x},1\le\:x\le\:4
|
extreme f(x)=(1-2x-x^2+4y^2-2y^2)
|
extreme\:f(x)=(1-2x-x^{2}+4y^{2}-2y^{2})
|
minimum 3+6x^2-4x^3
|
minimum\:3+6x^{2}-4x^{3}
|
extreme f(x,y)=x^2+y^2+8x-4y+7
|
extreme\:f(x,y)=x^{2}+y^{2}+8x-4y+7
|
extreme f(x)=(y-1)/(y^2-y+1)
|
extreme\:f(x)=\frac{y-1}{y^{2}-y+1}
|
F(x,y)=15x^2-22xy+24x+8y^2-16y
|
F(x,y)=15x^{2}-22xy+24x+8y^{2}-16y
|
extreme x^6
|
extreme\:x^{6}
|
extreme f(x,y)=sqrt(x^2+y^2+4)
|
extreme\:f(x,y)=\sqrt{x^{2}+y^{2}+4}
|
extreme f(x)=x^2-8x+40
|
extreme\:f(x)=x^{2}-8x+40
|
slope of 7x-2y=-2
|
slope\:7x-2y=-2
|
extreme f(x)=x^2-8x+18
|
extreme\:f(x)=x^{2}-8x+18
|
extreme f(x)= x/(x^2+4),-5<= x<= 5
|
extreme\:f(x)=\frac{x}{x^{2}+4},-5\le\:x\le\:5
|
extreme f(x)=-x^2-x-1
|
extreme\:f(x)=-x^{2}-x-1
|
minimum f(x)=5(x-3)^2+2
|
minimum\:f(x)=5(x-3)^{2}+2
|
extreme (e^x)/(4+e^x)
|
extreme\:\frac{e^{x}}{4+e^{x}}
|
extreme f(x)=-5x^2-80x-310
|
extreme\:f(x)=-5x^{2}-80x-310
|
f(x,y)=7x^2+8xy+4y^2+9xy^2+8x^2y
|
f(x,y)=7x^{2}+8xy+4y^{2}+9xy^{2}+8x^{2}y
|
y=f(x,y)=-2x^2-2xz-4z^2+40x+90z-150
|
y=f(x,y)=-2x^{2}-2xz-4z^{2}+40x+90z-150
|
midpoint (0,5)(-2,-2/3)
|
midpoint\:(0,5)(-2,-\frac{2}{3})
|
extreme f(x)=x^2-2ln(x)
|
extreme\:f(x)=x^{2}-2\ln(x)
|
minimum f(x)=(2e^x)/(x^5)
|
minimum\:f(x)=\frac{2e^{x}}{x^{5}}
|
extreme f(x,y)=(9x^2+7x+10)(9y^2+4y+9)
|
extreme\:f(x,y)=(9x^{2}+7x+10)(9y^{2}+4y+9)
|
extreme f(x)=4x^2-2x+1
|
extreme\:f(x)=4x^{2}-2x+1
|
extreme a+(ln(x))^2
|
extreme\:a+(\ln(x))^{2}
|
f(x,y)=(x-2)(2y-y^2)
|
f(x,y)=(x-2)(2y-y^{2})
|
extreme f(x,y)=x^3-4x^2-4y^2+8xy-3x
|
extreme\:f(x,y)=x^{3}-4x^{2}-4y^{2}+8xy-3x
|
domain of f(x)=e^{-3t+2}
|
domain\:f(x)=e^{-3t+2}
|
extreme f(x)=x^3-3x^2-9x-3
|
extreme\:f(x)=x^{3}-3x^{2}-9x-3
|
extreme f(x)=x^3-8x^2-12x+1
|
extreme\:f(x)=x^{3}-8x^{2}-12x+1
|
extreme f(x)=3cos(x),0<= x<= 4pi
|
extreme\:f(x)=3\cos(x),0\le\:x\le\:4π
|
extreme 4x+6y-x^2-y^2
|
extreme\:4x+6y-x^{2}-y^{2}
|
extreme f(x)=x^2sqrt(3-x)
|
extreme\:f(x)=x^{2}\sqrt{3-x}
|
extreme f(x)=sqrt(1-x)
|
extreme\:f(x)=\sqrt{1-x}
|
extreme f(x)=-3x^2-5x+7
|
extreme\:f(x)=-3x^{2}-5x+7
|
extreme 2x^3-2x^2-2x+9
|
extreme\:2x^{3}-2x^{2}-2x+9
|
extreme f(x)=320x^2-2560x^3
|
extreme\:f(x)=320x^{2}-2560x^{3}
|
inverse of x-3
|
inverse\:x-3
|
f(x,y)=x^2-4x+y^2-6y-2
|
f(x,y)=x^{2}-4x+y^{2}-6y-2
|
minimum f(x)= 1/3 x^3-1/2 x^2-2x
|
minimum\:f(x)=\frac{1}{3}x^{3}-\frac{1}{2}x^{2}-2x
|
extreme f(x)=4x^3-x^2+9
|
extreme\:f(x)=4x^{3}-x^{2}+9
|
extreme x^2-6x+12
|
extreme\:x^{2}-6x+12
|
f(x)=*f(y)-f(x,y)(xy)=3x+3y+6
|
f(x)=\cdot\:f(y)-f(x,y)(xy)=3x+3y+6
|
extreme f(x)=3-sin(3x)
|
extreme\:f(x)=3-\sin(3x)
|
extreme f(x)=x^2-7x+10
|
extreme\:f(x)=x^{2}-7x+10
|
f(x,y)=log_{10}(9x^2+16y^2-18x-64y-71)
|
f(x,y)=\log_{10}(9x^{2}+16y^{2}-18x-64y-71)
|
extreme x^3+y^3-30xy
|
extreme\:x^{3}+y^{3}-30xy
|
extreme f(x)=1-9x-6x^2-x^3
|
extreme\:f(x)=1-9x-6x^{2}-x^{3}
|
extreme points of f(x)=ln(3-5x^2)
|
extreme\:points\:f(x)=\ln(3-5x^{2})
|
extreme y=(4x^2)/(x^2-4)
|
extreme\:y=\frac{4x^{2}}{x^{2}-4}
|
f(x,y)=x^3+3xy^2-3y^2+3x^2+11
|
f(x,y)=x^{3}+3xy^{2}-3y^{2}+3x^{2}+11
|
extreme f(x)=-(10)/(x^2-3x+14)
|
extreme\:f(x)=-\frac{10}{x^{2}-3x+14}
|
minimum y=x^2+3
|
minimum\:y=x^{2}+3
|
f(x,y)= 1/(3^{-x^2-y^2)+1}
|
f(x,y)=\frac{1}{3^{-x^{2}-y^{2}}+1}
|
extreme f(x)=-sin^2(x),-pi<= x<= pi
|
extreme\:f(x)=-\sin^{2}(x),-π\le\:x\le\:π
|
extreme (-6)/(x-7)
|
extreme\:\frac{-6}{x-7}
|
extreme f(x)=x(22-40+2x)(40/2-x)
|
extreme\:f(x)=x(22-40+2x)(\frac{40}{2}-x)
|
f(x,y)=(y-8)*x^2-y^2
|
f(x,y)=(y-8)\cdot\:x^{2}-y^{2}
|
extreme f(x)=y=3x^3-36x^2+7
|
extreme\:f(x)=y=3x^{3}-36x^{2}+7
|
critical points of 2x+(4x)/(3x-1)
|
critical\:points\:2x+\frac{4x}{3x-1}
|
f(x,y)=e^xln(x)y
|
f(x,y)=e^{x}\ln(x)y
|
extreme e^{6x}+e^{-x}
|
extreme\:e^{6x}+e^{-x}
|
F(x,y)=12x^2+5xy-17x+7y-2y^2+5
|
F(x,y)=12x^{2}+5xy-17x+7y-2y^{2}+5
|
minimum 5xye^{-x^2-y^2}
|
minimum\:5xye^{-x^{2}-y^{2}}
|
extreme f(x)=-2x^2-8x+5
|
extreme\:f(x)=-2x^{2}-8x+5
|
extreme f(x)=t-t^{1/3}
|
extreme\:f(x)=t-t^{\frac{1}{3}}
|
extreme f(x,y)=x^2+y^2-2
|
extreme\:f(x,y)=x^{2}+y^{2}-2
|
f(x,y)=3x^3-2x^2y+5xy-y^3-1
|
f(x,y)=3x^{3}-2x^{2}y+5xy-y^{3}-1
|
symmetry y=-2(x-1)^2+1
|
symmetry\:y=-2(x-1)^{2}+1
|
monotone intervals f(x)=sqrt(x^2-4)
|
monotone\:intervals\:f(x)=\sqrt{x^{2}-4}
|
extreme f(x)=(3-x)e^{x-3}
|
extreme\:f(x)=(3-x)e^{x-3}
|
extreme f(x)=1+x^2e^{5-3x}
|
extreme\:f(x)=1+x^{2}e^{5-3x}
|
extreme y=-4e^{-4t}+5e^{-5t}
|
extreme\:y=-4e^{-4t}+5e^{-5t}
|
extreme x^3+y^3+9x^2-3y^2+15x-9y
|
extreme\:x^{3}+y^{3}+9x^{2}-3y^{2}+15x-9y
|
extreme f(x,y)=e^{1-y^2}-(x^2+xy)
|
extreme\:f(x,y)=e^{1-y^{2}}-(x^{2}+xy)
|
extreme (x^2-2x+4)/(x-2)
|
extreme\:\frac{x^{2}-2x+4}{x-2}
|
extreme f(x,y)=x^2+y^2=8
|
extreme\:f(x,y)=x^{2}+y^{2}=8
|
extreme f(x)=sqrt(1-x^2),-1<= x<= 0
|
extreme\:f(x)=\sqrt{1-x^{2}},-1\le\:x\le\:0
|
f(x/y)=xsqrt(y)+ysqrt(x)
|
f(\frac{x}{y})=x\sqrt{y}+y\sqrt{x}
|
extreme f(x)=2x^5-3x^3+8x-10
|
extreme\:f(x)=2x^{5}-3x^{3}+8x-10
|