extreme-x^3+2x^2+3x
|
extreme\:-x^{3}+2x^{2}+3x
|
extreme f(1)= 2/3 x^3-4x^2+6x+2
|
extreme\:f(1)=\frac{2}{3}x^{3}-4x^{2}+6x+2
|
extreme f(1)=x^2-2x-3
|
extreme\:f(1)=x^{2}-2x-3
|
domain of f(x)=x^2+5x-14
|
domain\:f(x)=x^{2}+5x-14
|
extreme f(x)=3x^4-4x^3-12x^2+1[-2.3]
|
extreme\:f(x)=3x^{4}-4x^{3}-12x^{2}+1[-2.3]
|
extreme f(x)= 1/3 x^3-x^2+x+1,0<= x<= 5
|
extreme\:f(x)=\frac{1}{3}x^{3}-x^{2}+x+1,0\le\:x\le\:5
|
extreme f(x)=8x^3-3xy+y^3
|
extreme\:f(x)=8x^{3}-3xy+y^{3}
|
extreme f(x,y)=3x^2+y^2-3x
|
extreme\:f(x,y)=3x^{2}+y^{2}-3x
|
y(x,t)=7x-8at(-4.5)
|
y(x,t)=7x-8at(-4.5)
|
extreme-x^2+5x-2
|
extreme\:-x^{2}+5x-2
|
extreme y=sqrt(9-x)
|
extreme\:y=\sqrt{9-x}
|
f(x,y)=49-x^2-y^2
|
f(x,y)=49-x^{2}-y^{2}
|
domain of f(x)= 1/((x-3))
|
domain\:f(x)=\frac{1}{(x-3)}
|
extreme f(x)=6x^2+500x+8000
|
extreme\:f(x)=6x^{2}+500x+8000
|
f(x,y)=xln(y)+ye^x-x^2
|
f(x,y)=x\ln(y)+ye^{x}-x^{2}
|
f(x,y)=-2x-2y-x^2-y^2
|
f(x,y)=-2x-2y-x^{2}-y^{2}
|
f(x)=xy+1/x+1/y
|
f(x)=xy+\frac{1}{x}+\frac{1}{y}
|
extreme y=3x^2-4x,0<= x<= 3
|
extreme\:y=3x^{2}-4x,0\le\:x\le\:3
|
extreme f(x)=x^5-5x-10
|
extreme\:f(x)=x^{5}-5x-10
|
extreme f(x)=4-16/3 x^2,0<= x<= 1/2
|
extreme\:f(x)=4-\frac{16}{3}x^{2},0\le\:x\le\:\frac{1}{2}
|
extreme f(x)=x^2-5x-2
|
extreme\:f(x)=x^{2}-5x-2
|
extreme f(x)=-2x^3+36x^2-192x+4
|
extreme\:f(x)=-2x^{3}+36x^{2}-192x+4
|
extreme x+(49)/x
|
extreme\:x+\frac{49}{x}
|
slope of y+6= 1/3 (x-4)
|
slope\:y+6=\frac{1}{3}(x-4)
|
extreme f(x)=xsqrt(x+4)
|
extreme\:f(x)=x\sqrt{x+4}
|
f(x,y)=-2x^4y^2+3x
|
f(x,y)=-2x^{4}y^{2}+3x
|
extreme f(x)=2x(18-2x^2)
|
extreme\:f(x)=2x(18-2x^{2})
|
extreme (x^2-1)*(e^y-1)+(y^2-2y+2)e^y
|
extreme\:(x^{2}-1)\cdot\:(e^{y}-1)+(y^{2}-2y+2)e^{y}
|
extreme f(x)=xsqrt(x+6)
|
extreme\:f(x)=x\sqrt{x+6}
|
extreme f(x,y)=x^2+y^2+10x-4y
|
extreme\:f(x,y)=x^{2}+y^{2}+10x-4y
|
extreme f(x)=5x-4ln(3x)
|
extreme\:f(x)=5x-4\ln(3x)
|
extreme 6/(x+7)
|
extreme\:\frac{6}{x+7}
|
g(x,y)=-4cx+4yx
|
g(x,y)=-4cx+4yx
|
extreme f(x,y)=(x^2+y^2)^2=2*(x^2-y^2)
|
extreme\:f(x,y)=(x^{2}+y^{2})^{2}=2\cdot\:(x^{2}-y^{2})
|
parity f(x)=3x^3
|
parity\:f(x)=3x^{3}
|
extreme f(x)=(x^2)/(x^2-36)
|
extreme\:f(x)=\frac{x^{2}}{x^{2}-36}
|
f(x)=x^2-2x^3+2x^2+3xy
|
f(x)=x^{2}-2x^{3}+2x^{2}+3xy
|
extreme f(x)=-x^3-3x^2+24x-6
|
extreme\:f(x)=-x^{3}-3x^{2}+24x-6
|
extreme f(x)=1-2x,x>=-1
|
extreme\:f(x)=1-2x,x\ge\:-1
|
extreme 4x^3e^{-x}
|
extreme\:4x^{3}e^{-x}
|
extreme f(x)=9sin(x)+9cos(x),0<= x<= 2pi
|
extreme\:f(x)=9\sin(x)+9\cos(x),0\le\:x\le\:2π
|
extreme f(x)=ln(8-ln(x))
|
extreme\:f(x)=\ln(8-\ln(x))
|
minimum f(x)=(x^2+3x-1)^{1/3}
|
minimum\:f(x)=(x^{2}+3x-1)^{\frac{1}{3}}
|
extreme points of f(x)=-x^3+3x^2+9x+1
|
extreme\:points\:f(x)=-x^{3}+3x^{2}+9x+1
|
extreme x^2-x
|
extreme\:x^{2}-x
|
extreme f(x)=(2(-2x^2+4))/(sqrt(4-x^2))
|
extreme\:f(x)=\frac{2(-2x^{2}+4)}{\sqrt{4-x^{2}}}
|
extreme x^2+x
|
extreme\:x^{2}+x
|
extreme 5xy+4ln(x)+10y
|
extreme\:5xy+4\ln(x)+10y
|
f(x,y)=x^2+y^2+2x-4y+2
|
f(x,y)=x^{2}+y^{2}+2x-4y+2
|
extreme f(x)=3x^4+8x^3-14x^2-24x+17
|
extreme\:f(x)=3x^{4}+8x^{3}-14x^{2}-24x+17
|
f(x,y)=sqrt((x+y)/(x+y))
|
f(x,y)=\sqrt{\frac{x+y}{x+y}}
|
extreme f(x,y)=x^2-y^2+4x+2y
|
extreme\:f(x,y)=x^{2}-y^{2}+4x+2y
|
intercepts of (5x)/(x^2-16)
|
intercepts\:\frac{5x}{x^{2}-16}
|
extreme f(x)=5x^2-3x+1,-3<= x<= 3
|
extreme\:f(x)=5x^{2}-3x+1,-3\le\:x\le\:3
|
P(a,b)=6a^2b+2ab^2
|
P(a,b)=6a^{2}b+2ab^{2}
|
extreme f(x)=(ln(x))^5x
|
extreme\:f(x)=(\ln(x))^{5}x
|
extreme f(x,y)=x^2+xy+y^2+6x-6y+3
|
extreme\:f(x,y)=x^{2}+xy+y^{2}+6x-6y+3
|
extreme f(x)=(ln(5x))/x
|
extreme\:f(x)=\frac{\ln(5x)}{x}
|
f(x,y)=3x^2+8xy-7y^2-3x+6y
|
f(x,y)=3x^{2}+8xy-7y^{2}-3x+6y
|
extreme f(x,y)=x^2-4x-y^2-6y+7
|
extreme\:f(x,y)=x^{2}-4x-y^{2}-6y+7
|
extreme f(x)=x^5-5x^4+5=x^4(x-5)+5
|
extreme\:f(x)=x^{5}-5x^{4}+5=x^{4}(x-5)+5
|
extreme points of 4x^3+7x^2-20x+9
|
extreme\:points\:4x^{3}+7x^{2}-20x+9
|
extreme f(x)=-x^2+12x+80
|
extreme\:f(x)=-x^{2}+12x+80
|
extreme f(x)=x*(4-2x)*(11-2x)
|
extreme\:f(x)=x\cdot\:(4-2x)\cdot\:(11-2x)
|
extreme x^3+y^3-3x^2-9y^2-9x
|
extreme\:x^{3}+y^{3}-3x^{2}-9y^{2}-9x
|
extreme f(x,y)=2xy-x^2-6y^2+4x+1
|
extreme\:f(x,y)=2xy-x^{2}-6y^{2}+4x+1
|
extreme f(x)=-x^2-2x+99
|
extreme\:f(x)=-x^{2}-2x+99
|
extreme f(x)=-x^2+5,-3<= x<= 4
|
extreme\:f(x)=-x^{2}+5,-3\le\:x\le\:4
|
extreme f(x)=x^{2/3}(x-1),-1<= x<= 1
|
extreme\:f(x)=x^{\frac{2}{3}}(x-1),-1\le\:x\le\:1
|
f(x,y)=4x^3+2y^2-24x^2+2y+8
|
f(x,y)=4x^{3}+2y^{2}-24x^{2}+2y+8
|
extreme (8x)/(1-x)
|
extreme\:\frac{8x}{1-x}
|
asymptotes of f(x)=(x^3-x^2+x-1)/(x-x^3)
|
asymptotes\:f(x)=\frac{x^{3}-x^{2}+x-1}{x-x^{3}}
|
extreme f(x)=x^2+3xy+y^2+x+3
|
extreme\:f(x)=x^{2}+3xy+y^{2}+x+3
|
minimum f(x)=3x^{2/3}-x
|
minimum\:f(x)=3x^{\frac{2}{3}}-x
|
extreme f(x)=3x^2+x-1
|
extreme\:f(x)=3x^{2}+x-1
|
f(x,y)=x^2+y^2+xy-8x-7y+400
|
f(x,y)=x^{2}+y^{2}+xy-8x-7y+400
|
extreme f(x)=((x^2-12))/(x-4)
|
extreme\:f(x)=\frac{(x^{2}-12)}{x-4}
|
f(t)=te^{w/t}
|
f(t)=te^{\frac{w}{t}}
|
extreme f(x)=y^2-xy-x^2
|
extreme\:f(x)=y^{2}-xy-x^{2}
|
extreme f(x)=-x^2+4x+5
|
extreme\:f(x)=-x^{2}+4x+5
|
f(x,y)=((2x+y))/3
|
f(x,y)=\frac{(2x+y)}{3}
|
intercepts of 3x^7-x^5-7x^4-2x^3+3x^2
|
intercepts\:3x^{7}-x^{5}-7x^{4}-2x^{3}+3x^{2}
|
f(x,y)=(sqrt(x-x^2))/(1-y^2)
|
f(x,y)=\frac{\sqrt{x-x^{2}}}{1-y^{2}}
|
extreme f(x)=x^2+xy+1/2 y^2-4x+y
|
extreme\:f(x)=x^{2}+xy+\frac{1}{2}y^{2}-4x+y
|
extreme f(x)= 1/3 x^3-2x^2-5x+2
|
extreme\:f(x)=\frac{1}{3}x^{3}-2x^{2}-5x+2
|
extreme xye^{x+2y}
|
extreme\:xye^{x+2y}
|
extreme 1-2x^2
|
extreme\:1-2x^{2}
|
extreme f(x)= x/(x^2+1),-3<= x<= 4
|
extreme\:f(x)=\frac{x}{x^{2}+1},-3\le\:x\le\:4
|
extreme x^4-8x^2+5
|
extreme\:x^{4}-8x^{2}+5
|
extreme ((x^2-9))/(x^2+9)
|
extreme\:\frac{(x^{2}-9)}{x^{2}+9}
|
extreme f(x)=x^{1/5}(x^2-9)
|
extreme\:f(x)=x^{\frac{1}{5}}(x^{2}-9)
|
extreme f(x)= 2/(x^2-2x-3)
|
extreme\:f(x)=\frac{2}{x^{2}-2x-3}
|
midpoint (5,4)(-3,2)
|
midpoint\:(5,4)(-3,2)
|
domain of f(x)=sqrt(x^4-16x^2)
|
domain\:f(x)=\sqrt{x^{4}-16x^{2}}
|
extreme f(x)=\sqrt[3]{(5-x)/x}
|
extreme\:f(x)=\sqrt[3]{\frac{5-x}{x}}
|
extreme (10x^2-18x)/(15x-27)
|
extreme\:\frac{10x^{2}-18x}{15x-27}
|
extreme f(θ)=2sec(θ)-tan(θ)
|
extreme\:f(θ)=2\sec(θ)-\tan(θ)
|
extreme f(x)=8x+2/x
|
extreme\:f(x)=8x+\frac{2}{x}
|
extreme s^2-4s+5
|
extreme\:s^{2}-4s+5
|
extreme-0.05x^2+20x+1000
|
extreme\:-0.05x^{2}+20x+1000
|