f(x,y)=(3x-y)/4
|
f(x,y)=\frac{3x-y}{4}
|
extreme (x^3+8)/x
|
extreme\:\frac{x^{3}+8}{x}
|
P(x,y)=2x+3y
|
P(x,y)=2x+3y
|
extreme e^{xy}
|
extreme\:e^{xy}
|
extreme xsqrt(49-x^2)
|
extreme\:x\sqrt{49-x^{2}}
|
f(x,y)=x^2-y^2-xy+4x-2y
|
f(x,y)=x^{2}-y^{2}-xy+4x-2y
|
domain of f(x)=2x^2-5x+1
|
domain\:f(x)=2x^{2}-5x+1
|
extreme f(x)=2x^3+3x^2-72x+4,-4<= x<= 6
|
extreme\:f(x)=2x^{3}+3x^{2}-72x+4,-4\le\:x\le\:6
|
extreme 2x
|
extreme\:2x
|
extreme f(x)=(x-3)/(x^2-9)
|
extreme\:f(x)=\frac{x-3}{x^{2}-9}
|
f(x,y)=3x^3-12x+2y^2-8y+7
|
f(x,y)=3x^{3}-12x+2y^{2}-8y+7
|
f(x,y)=(1/(sqrt(16-x^2-y^2)))
|
f(x,y)=(\frac{1}{\sqrt{16-x^{2}-y^{2}}})
|
extreme 6x
|
extreme\:6x
|
extreme (210-x)(110+x)-24(210-x)
|
extreme\:(210-x)(110+x)-24(210-x)
|
f(x,y)=3x^2-y^2+4
|
f(x,y)=3x^{2}-y^{2}+4
|
extreme f(x)=12x^2-48x+20
|
extreme\:f(x)=12x^{2}-48x+20
|
extreme f(x)=4x^4-32x^3
|
extreme\:f(x)=4x^{4}-32x^{3}
|
inverse of 2/(3-x)
|
inverse\:\frac{2}{3-x}
|
extreme y=3x^{2/3}-2x[-1.1]
|
extreme\:y=3x^{\frac{2}{3}}-2x[-1.1]
|
extreme f(x)=(7+x)/(8-x)
|
extreme\:f(x)=\frac{7+x}{8-x}
|
extreme f(x)=x^7-x^5
|
extreme\:f(x)=x^{7}-x^{5}
|
extreme f(x)=-(5x+3)e^{-2x},(-3,2)
|
extreme\:f(x)=-(5x+3)e^{-2x},(-3,2)
|
extreme xsqrt(x-1)
|
extreme\:x\sqrt{x-1}
|
extreme f(x)=x^3-15x^2+12x+7
|
extreme\:f(x)=x^{3}-15x^{2}+12x+7
|
extreme f(x)=3x^2-4x
|
extreme\:f(x)=3x^{2}-4x
|
extreme f(x,y)=sqrt(x^2+y^2+16)
|
extreme\:f(x,y)=\sqrt{x^{2}+y^{2}+16}
|
extreme x+3,0<= x<= 2
|
extreme\:x+3,0\le\:x\le\:2
|
extreme x/(x^2-x+1)(0.3)
|
extreme\:\frac{x}{x^{2}-x+1}(0.3)
|
slope of y=-11x
|
slope\:y=-11x
|
extreme f(x)=x^2+(200)/x ,(0,infinity)
|
extreme\:f(x)=x^{2}+\frac{200}{x},(0,\infty\:)
|
extreme f(x,y)=9-2*x+4*y-x^2-4*y^2
|
extreme\:f(x,y)=9-2\cdot\:x+4\cdot\:y-x^{2}-4\cdot\:y^{2}
|
extreme f(x)=5x-8sin(x),0<= x<= pi
|
extreme\:f(x)=5x-8\sin(x),0\le\:x\le\:π
|
extreme f(x)=x(440-2x)
|
extreme\:f(x)=x(440-2x)
|
extreme sqrt(x)ln(4x)
|
extreme\:\sqrt{x}\ln(4x)
|
extreme f(x)=2x^2+7x
|
extreme\:f(x)=2x^{2}+7x
|
extreme e^{2-x}+x^2-x/2
|
extreme\:e^{2-x}+x^{2}-\frac{x}{2}
|
extreme f(x)=(x^2+3x+9),-2<= x<= 1
|
extreme\:f(x)=(x^{2}+3x+9),-2\le\:x\le\:1
|
extreme 2x+2/x
|
extreme\:2x+\frac{2}{x}
|
extreme points of f(x)=x^3-3x^2-9x+2
|
extreme\:points\:f(x)=x^{3}-3x^{2}-9x+2
|
U(x,y)=2x(1-y)
|
U(x,y)=2x(1-y)
|
extreme f(x)=4x^3-x^2-x+8
|
extreme\:f(x)=4x^{3}-x^{2}-x+8
|
extreme f(x)=-3sec(x)
|
extreme\:f(x)=-3\sec(x)
|
extreme xsqrt(x-2)
|
extreme\:x\sqrt{x-2}
|
extreme f(x)=y^3-3yx^2-3y^2-3x^2+1
|
extreme\:f(x)=y^{3}-3yx^{2}-3y^{2}-3x^{2}+1
|
extreme 3-x^2
|
extreme\:3-x^{2}
|
extreme 9x-5
|
extreme\:9x-5
|
f(x,y)=sqrt(400-16x^2-25y^2)
|
f(x,y)=\sqrt{400-16x^{2}-25y^{2}}
|
extreme f(x)=sin(11x)
|
extreme\:f(x)=\sin(11x)
|
f(x,y)= 1/4 x^4-1/2 y^2-1/2 x^2-y+10
|
f(x,y)=\frac{1}{4}x^{4}-\frac{1}{2}y^{2}-\frac{1}{2}x^{2}-y+10
|
critical points of 8x-4
|
critical\:points\:8x-4
|
f(x)=x^3+y^3-27x-48y-24
|
f(x)=x^{3}+y^{3}-27x-48y-24
|
extreme f(x)=4(5xy+(1024)/y+(1024)/x)
|
extreme\:f(x)=4(5xy+\frac{1024}{y}+\frac{1024}{x})
|
extreme f(x)=-100x^2+1800x
|
extreme\:f(x)=-100x^{2}+1800x
|
extreme f(x)= 1/3 x^3-2x^2+3x-4[-2.5]
|
extreme\:f(x)=\frac{1}{3}x^{3}-2x^{2}+3x-4[-2.5]
|
minimum f(x)=x^2-2x+1
|
minimum\:f(x)=x^{2}-2x+1
|
extreme-9x^2-18x+432
|
extreme\:-9x^{2}-18x+432
|
extreme 4/3 x^3-6x^2-40x-28
|
extreme\:\frac{4}{3}x^{3}-6x^{2}-40x-28
|
extreme f(x)=3x^2-3x+2
|
extreme\:f(x)=3x^{2}-3x+2
|
extreme f(x)=(3x^2-4)/(2x-4)
|
extreme\:f(x)=\frac{3x^{2}-4}{2x-4}
|
inverse of f(x)=6.3(b+2)^{3/2}
|
inverse\:f(x)=6.3(b+2)^{\frac{3}{2}}
|
f(x,y)=3x^3-(y+1)^3-9xy+3y+1
|
f(x,y)=3x^{3}-(y+1)^{3}-9xy+3y+1
|
extreme f(x)=(x^4)/4-x^3+3
|
extreme\:f(x)=\frac{x^{4}}{4}-x^{3}+3
|
minimum cos(pi)x
|
minimum\:\cos(π)x
|
extreme f(x)=-3(x+2)e^{4x},(-5,0)
|
extreme\:f(x)=-3(x+2)e^{4x},(-5,0)
|
extreme sin(5x),-pi/5 <= x<= pi/4
|
extreme\:\sin(5x),-\frac{π}{5}\le\:x\le\:\frac{π}{4}
|
extreme f(x)=(x^4-4x^3)/2
|
extreme\:f(x)=\frac{x^{4}-4x^{3}}{2}
|
extreme f(x)=0.5x^2+15x+5000
|
extreme\:f(x)=0.5x^{2}+15x+5000
|
minimum f(x)=(x^5)/(20)-1x^3
|
minimum\:f(x)=\frac{x^{5}}{20}-1x^{3}
|
extreme (x^2+4x)/(x^3-17x^2+72x)
|
extreme\:\frac{x^{2}+4x}{x^{3}-17x^{2}+72x}
|
extreme f(x)=3x^3-3x^2-3x+10
|
extreme\:f(x)=3x^{3}-3x^{2}-3x+10
|
domain of-2/x
|
domain\:-\frac{2}{x}
|
extreme 0.5x+15+(5000)/x
|
extreme\:0.5x+15+\frac{5000}{x}
|
extreme f(x)=5x^3-6
|
extreme\:f(x)=5x^{3}-6
|
extreme f(x)=x^2+(10)/x
|
extreme\:f(x)=x^{2}+\frac{10}{x}
|
f(x,y)=(x^2-y^2)e-(x^2+y^2)
|
f(x,y)=(x^{2}-y^{2})e-(x^{2}+y^{2})
|
extreme y=(x*(1+x)*(1-x))/(1+2x)
|
extreme\:y=\frac{x\cdot\:(1+x)\cdot\:(1-x)}{1+2x}
|
extreme f(x)=((x^2))/(x^2-81)
|
extreme\:f(x)=\frac{(x^{2})}{x^{2}-81}
|
extreme f(x)=3x^3-12x^2+12x-6,0<= x<= 4
|
extreme\:f(x)=3x^{3}-12x^{2}+12x-6,0\le\:x\le\:4
|
extreme y=3x^3(x-5)^2
|
extreme\:y=3x^{3}(x-5)^{2}
|
range of f(x)=-sqrt(x-7)+1
|
range\:f(x)=-\sqrt{x-7}+1
|
midpoint (1,6)(5,-2)
|
midpoint\:(1,6)(5,-2)
|
minimum y= 1/(x-8)-9
|
minimum\:y=\frac{1}{x-8}-9
|
extreme y=x+(25)/x
|
extreme\:y=x+\frac{25}{x}
|
extreme f(x)=(3x^2)/(x-2),-2<= x<= 1
|
extreme\:f(x)=\frac{3x^{2}}{x-2},-2\le\:x\le\:1
|
extreme f(x)=x(16-41+2x)(41/2-x)
|
extreme\:f(x)=x(16-41+2x)(\frac{41}{2}-x)
|
g(x,y)=sqrt(4-x^{(2))-y^{(2)}}
|
g(x,y)=\sqrt{4-x^{(2)}-y^{(2)}}
|
extreme-2x^2+200x
|
extreme\:-2x^{2}+200x
|
f(x,y)=3x-1.5xy+0.5y^3
|
f(x,y)=3x-1.5xy+0.5y^{3}
|
extreme f(x)=sin(x)*cos(x)
|
extreme\:f(x)=\sin(x)\cdot\:\cos(x)
|
extreme x^2+xy+y^2+4y
|
extreme\:x^{2}+xy+y^{2}+4y
|
asymptotes of f(x)=(x^2-4)/(x^2-x-6)
|
asymptotes\:f(x)=\frac{x^{2}-4}{x^{2}-x-6}
|
f(x,y)=(2x+x^2)*(2y-y^2)
|
f(x,y)=(2x+x^{2})\cdot\:(2y-y^{2})
|
minimum x^2+2y^2-xy
|
minimum\:x^{2}+2y^{2}-xy
|
extreme f(x,y)=-3x^2+2y^2+3x-4y+4
|
extreme\:f(x,y)=-3x^{2}+2y^{2}+3x-4y+4
|
extreme f(x)=x^4-2x^2+x^3,-4<= x<=-1
|
extreme\:f(x)=x^{4}-2x^{2}+x^{3},-4\le\:x\le\:-1
|
extreme x^2+xy+y^2+7y
|
extreme\:x^{2}+xy+y^{2}+7y
|
extreme f(x,y)=xy+2x-ln(x^2y)
|
extreme\:f(x,y)=xy+2x-\ln(x^{2}y)
|
extreme f(x)=x^4+4x^2+1
|
extreme\:f(x)=x^{4}+4x^{2}+1
|
extreme f(x)=2x^3+9x^2-108x+7
|
extreme\:f(x)=2x^{3}+9x^{2}-108x+7
|
extreme 150+8x^3+x^4
|
extreme\:150+8x^{3}+x^{4}
|