Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
slope ofintercept 12x+3y=-18
slopeintercept\:12x+3y=-18
domain of (x+2)/(x^3+8)
domain\:\frac{x+2}{x^{3}+8}
inverse of f(x)=(2x-4)/3
inverse\:f(x)=\frac{2x-4}{3}
asymptotes of (x^2-25)/(x-5)
asymptotes\:\frac{x^{2}-25}{x-5}
inverse of (-x-5)/3
inverse\:\frac{-x-5}{3}
extreme 1/9 x^4-4/9 x^3
extreme\:\frac{1}{9}x^{4}-\frac{4}{9}x^{3}
inverse of x^2-x
inverse\:x^{2}-x
inverse of y=e^{3x}
inverse\:y=e^{3x}
inverse of x^2-9
inverse\:x^{2}-9
slope ofintercept 2/3 x+8=y-3
slopeintercept\:\frac{2}{3}x+8=y-3
domain of f(x)=-2x^2+1
domain\:f(x)=-2x^{2}+1
inverse of f(x)=(\sqrt[4]{x}+6)/7-10
inverse\:f(x)=\frac{\sqrt[4]{x}+6}{7}-10
extreme f(x)=x^{1/3}(x+8)
extreme\:f(x)=x^{\frac{1}{3}}(x+8)
amplitude of y= 1/2 cos(x)
amplitude\:y=\frac{1}{2}\cos(x)
inverse of ((x+1))/((x-1))
inverse\:\frac{(x+1)}{(x-1)}
extreme f(x)=-x^3+5x^2+8x+3
extreme\:f(x)=-x^{3}+5x^{2}+8x+3
simplify (-3.1)(-8.8)
simplify\:(-3.1)(-8.8)
distance (8,2),(14,3)
distance\:(8,2),(14,3)
domain of f(x)=-ln(x-3)+e
domain\:f(x)=-\ln(x-3)+e
domain of f(x)= 2/(x-4)
domain\:f(x)=\frac{2}{x-4}
inverse of f(x)=3e^{2x}+1
inverse\:f(x)=3e^{2x}+1
asymptotes of f(x)=(x^2)/(x^2+3)
asymptotes\:f(x)=\frac{x^{2}}{x^{2}+3}
perpendicular-3+4y=10
perpendicular\:-3+4y=10
line (1.5,9),(3.5,13)
line\:(1.5,9),(3.5,13)
slope of y=6x-x^2,(1,5)
slope\:y=6x-x^{2},(1,5)
asymptotes of f(x)= 4/((x-2)(x+2))
asymptotes\:f(x)=\frac{4}{(x-2)(x+2)}
domain of f(x)=2x^4-12
domain\:f(x)=2x^{4}-12
inverse of f(x)=(10)/(x+7)
inverse\:f(x)=\frac{10}{x+7}
inverse of f(x)=-2/3 x
inverse\:f(x)=-\frac{2}{3}x
inflection y=(x^3)/3-3x^2-7x
inflection\:y=\frac{x^{3}}{3}-3x^{2}-7x
asymptotes of f(x)=(x^2+x-12)/(x^2-4)
asymptotes\:f(x)=\frac{x^{2}+x-12}{x^{2}-4}
inverse of f(x)=sqrt(2x)-4
inverse\:f(x)=\sqrt{2x}-4
range of f(x)=x^3-1
range\:f(x)=x^{3}-1
domain of sqrt(x)+4
domain\:\sqrt{x}+4
inverse of y=(3x+4)^2
inverse\:y=(3x+4)^{2}
range of f(x)=3x+1
range\:f(x)=3x+1
inverse of 7x^7
inverse\:7x^{7}
line (1,-7),(4,2)
line\:(1,-7),(4,2)
domain of f(x)=2x+5
domain\:f(x)=2x+5
domain of f(x)=(sqrt(x+1))/(sqrt(9-x^2))
domain\:f(x)=\frac{\sqrt{x+1}}{\sqrt{9-x^{2}}}
domain of-1/(x^4)-3
domain\:-\frac{1}{x^{4}}-3
domain of 4x-3
domain\:4x-3
periodicity of cos(ec)
periodicity\:\cos(ec)
intercepts of 3y=27
intercepts\:3y=27
asymptotes of (x^2+1)/x
asymptotes\:\frac{x^{2}+1}{x}
asymptotes of f(x)=(x+4)/(x+1)
asymptotes\:f(x)=\frac{x+4}{x+1}
inverse of f(x)=(x+4)^2
inverse\:f(x)=(x+4)^{2}
inverse of f(x)=15x-1
inverse\:f(x)=15x-1
midpoint (-2,3),(8,-7)
midpoint\:(-2,3),(8,-7)
distance (-3,0),(-5,-4)
distance\:(-3,0),(-5,-4)
asymptotes of f(x)=3*2^x
asymptotes\:f(x)=3\cdot\:2^{x}
domain of f(x)=sqrt(x+7)
domain\:f(x)=\sqrt{x+7}
symmetry (2x^2)/(x^2-4)
symmetry\:\frac{2x^{2}}{x^{2}-4}
intercepts of f(x)=(x+4)^2(1-x)
intercepts\:f(x)=(x+4)^{2}(1-x)
domain of f(x)=\sqrt[3]{3-\sqrt[3]{3-x}}
domain\:f(x)=\sqrt[3]{3-\sqrt[3]{3-x}}
slope ofintercept 6x-3y=12
slopeintercept\:6x-3y=12
inverse of f(x)=(x^2-2)/(x^2+1)
inverse\:f(x)=\frac{x^{2}-2}{x^{2}+1}
intercepts of x/(x^2-6x+8)
intercepts\:\frac{x}{x^{2}-6x+8}
critical f(x)=2xsqrt(3x^2+3)
critical\:f(x)=2x\sqrt{3x^{2}+3}
slope of 7x-2y=4
slope\:7x-2y=4
range of f(x)=(x^2+6x+11)/(2x^2+12x+18)
range\:f(x)=\frac{x^{2}+6x+11}{2x^{2}+12x+18}
critical f(x)=-x^2-3x-2
critical\:f(x)=-x^{2}-3x-2
asymptotes of f(x)=7tan(0.4x)
asymptotes\:f(x)=7\tan(0.4x)
inverse of f(x)=(2x)/(x-1)
inverse\:f(x)=\frac{2x}{x-1}
asymptotes of f(x)=(-x+6)/(x^2-49)
asymptotes\:f(x)=\frac{-x+6}{x^{2}-49}
slope ofintercept 2y-4x=-18
slopeintercept\:2y-4x=-18
distance (1,1),(7,5)
distance\:(1,1),(7,5)
critical f(x)=(10)/(x^2+5)
critical\:f(x)=\frac{10}{x^{2}+5}
domain of x/(sqrt(x)-9)
domain\:\frac{x}{\sqrt{x}-9}
domain of f(x)=(x-8)/(x+7)
domain\:f(x)=\frac{x-8}{x+7}
distance (3,7),(6,5)
distance\:(3,7),(6,5)
inverse of f(x)=-(x-5)^2+2
inverse\:f(x)=-(x-5)^{2}+2
domain of f(x)=4-sqrt(2x-5)
domain\:f(x)=4-\sqrt{2x-5}
asymptotes of f(x)= x/((x-4)(x+2))
asymptotes\:f(x)=\frac{x}{(x-4)(x+2)}
domain of f(x)=7x^2+7x+9
domain\:f(x)=7x^{2}+7x+9
shift-5sin(2pix+5)
shift\:-5\sin(2πx+5)
line y=-x
line\:y=-x
critical (x^3)/3+x^2-8x+20
critical\:\frac{x^{3}}{3}+x^{2}-8x+20
periodicity of f(x)=5sec(3x-pi/2)
periodicity\:f(x)=5\sec(3x-\frac{π}{2})
domain of f(x)= 1/(sqrt(x-15))
domain\:f(x)=\frac{1}{\sqrt{x-15}}
domain of f(x)=ln(x/(1-x^2))
domain\:f(x)=\ln(\frac{x}{1-x^{2}})
slope of y=-6
slope\:y=-6
intercepts of f(x)=-3x+1
intercepts\:f(x)=-3x+1
range of 3sqrt(x)
range\:3\sqrt{x}
inverse of (1-sqrt(x))/(1+sqrt(x))
inverse\:\frac{1-\sqrt{x}}{1+\sqrt{x}}
inverse of f(x)=(55x)/(15-x)
inverse\:f(x)=\frac{55x}{15-x}
inverse of 15/3
inverse\:\frac{15}{3}
inverse of f(x)=((-x+1))/((1+x))
inverse\:f(x)=\frac{(-x+1)}{(1+x)}
domain of f(x)=((x+3))/(2x^2-x-3)
domain\:f(x)=\frac{(x+3)}{2x^{2}-x-3}
domain of f(x)=sqrt(-x)+4
domain\:f(x)=\sqrt{-x}+4
domain of f(x)=sqrt(16-x^4)
domain\:f(x)=\sqrt{16-x^{4}}
inverse of f(x)= 3/(2x-1)
inverse\:f(x)=\frac{3}{2x-1}
domain of f(x)=ln(5x)
domain\:f(x)=\ln(5x)
inverse of y=5x+4
inverse\:y=5x+4
extreme f(x)=x^2+5x+2
extreme\:f(x)=x^{2}+5x+2
inverse of f(x)=ln(x-4)+2
inverse\:f(x)=\ln(x-4)+2
domain of f(x)=2x-x^2
domain\:f(x)=2x-x^{2}
domain of (x-1)/(x+2)
domain\:\frac{x-1}{x+2}
range of f(x)=5x-2
range\:f(x)=5x-2
domain of f(x)=ln(x/(2-x))
domain\:f(x)=\ln(\frac{x}{2-x})
1
..
358
359
360
361
362
..
1324