extreme f(x)=-0.04x^2+42x-500
|
extreme\:f(x)=-0.04x^{2}+42x-500
|
extreme f(x)=x^5-10x^4+2=x^4(x-10)+2
|
extreme\:f(x)=x^{5}-10x^{4}+2=x^{4}(x-10)+2
|
domain of f(x)=12x^3-35
|
domain\:f(x)=12x^{3}-35
|
extreme f(x)=x^9-x^7
|
extreme\:f(x)=x^{9}-x^{7}
|
f(x,y)=x^2+2y^2-4x+4y+6
|
f(x,y)=x^{2}+2y^{2}-4x+4y+6
|
extreme f(x)=ln(4x)-8x^2
|
extreme\:f(x)=\ln(4x)-8x^{2}
|
minimum 3x^4+3y^4-2xy
|
minimum\:3x^{4}+3y^{4}-2xy
|
extreme f(x)=150x+18x^2-1.5x^3
|
extreme\:f(x)=150x+18x^{2}-1.5x^{3}
|
extreme f(x)=sin^2(2x)-cos^2(2x)-1
|
extreme\:f(x)=\sin^{2}(2x)-\cos^{2}(2x)-1
|
extreme f(x)=2x-4cos(x),-2<= x<= 0
|
extreme\:f(x)=2x-4\cos(x),-2\le\:x\le\:0
|
extreme f(x)=(x+1)ln^2(x+1)
|
extreme\:f(x)=(x+1)\ln^{2}(x+1)
|
extreme f(x)=-2x^2+140x
|
extreme\:f(x)=-2x^{2}+140x
|
range of-3x^4-14x^3-16x^2-2x+3
|
range\:-3x^{4}-14x^{3}-16x^{2}-2x+3
|
extreme f(x)=x^3-27x,0<= x<= 6
|
extreme\:f(x)=x^{3}-27x,0\le\:x\le\:6
|
extreme f(x)=x^3-27x,0<= x<= 4
|
extreme\:f(x)=x^{3}-27x,0\le\:x\le\:4
|
extreme f(x)=x^2-6x-1,0<= x<= 3
|
extreme\:f(x)=x^{2}-6x-1,0\le\:x\le\:3
|
extreme f(x)=x^2-6x-1,0<= x<= 5
|
extreme\:f(x)=x^{2}-6x-1,0\le\:x\le\:5
|
f(x,y)=-x^2-y^2+x+2y-1
|
f(x,y)=-x^{2}-y^{2}+x+2y-1
|
y=(2x+5z+19)/3
|
y=\frac{2x+5z+19}{3}
|
extreme g(x)=x^3-x^2-8x-5
|
extreme\:g(x)=x^{3}-x^{2}-8x-5
|
extreme f(x)=(x^2+1)/(x^2-25)
|
extreme\:f(x)=\frac{x^{2}+1}{x^{2}-25}
|
extreme 2x^3-x^2-4x+4
|
extreme\:2x^{3}-x^{2}-4x+4
|
extreme f(x,y)=x^2+xy+y^2+4x-7y+7
|
extreme\:f(x,y)=x^{2}+xy+y^{2}+4x-7y+7
|
parallel y-4=-1/10 (x-10)
|
parallel\:y-4=-\frac{1}{10}(x-10)
|
extreme 2x^3-x^2-4x+8
|
extreme\:2x^{3}-x^{2}-4x+8
|
extreme f(x)=x^3-13x^2-9x
|
extreme\:f(x)=x^{3}-13x^{2}-9x
|
extreme 3x^3-9x+9xy^2
|
extreme\:3x^{3}-9x+9xy^{2}
|
f(x,y)= 2/x+1/y+xy
|
f(x,y)=\frac{2}{x}+\frac{1}{y}+xy
|
f(x,y)= 1/x+1/y+xy
|
f(x,y)=\frac{1}{x}+\frac{1}{y}+xy
|
extreme f(x)=7(x-e^x)
|
extreme\:f(x)=7(x-e^{x})
|
extreme f(x)=7x^2-11x+5
|
extreme\:f(x)=7x^{2}-11x+5
|
extreme f(x)=sqrt(26x^2+80x+64)
|
extreme\:f(x)=\sqrt{26x^{2}+80x+64}
|
extreme f(x,y)=x^3-y^2-12x+4y+2
|
extreme\:f(x,y)=x^{3}-y^{2}-12x+4y+2
|
inverse of g(x)=13x-13
|
inverse\:g(x)=13x-13
|
extreme 2x-(360)/(x^2)
|
extreme\:2x-\frac{360}{x^{2}}
|
extreme f(x)=(3x-3)^2,-infinity <x<= 2
|
extreme\:f(x)=(3x-3)^{2},-\infty\:<x\le\:2
|
f(x,y,z)=xln(y)
|
f(x,y,z)=x\ln(y)
|
f(x,y)=200-x-y
|
f(x,y)=200-x-y
|
extreme f(x)=sqrt(x^2+49)
|
extreme\:f(x)=\sqrt{x^{2}+49}
|
extreme f(x)=x^2-2x+3,x<= 2
|
extreme\:f(x)=x^{2}-2x+3,x\le\:2
|
f(x,y)=(y+204)*408+x+204
|
f(x,y)=(y+204)\cdot\:408+x+204
|
extreme f(x)=x+4x
|
extreme\:f(x)=x+4x
|
extreme f(x)=-3sin^2(x),0<= x<= pi
|
extreme\:f(x)=-3\sin^{2}(x),0\le\:x\le\:π
|
domain of f(x)=sqrt(2x-1)
|
domain\:f(x)=\sqrt{2x-1}
|
extreme f(x,y)=sqrt(x^2+y^2+64)
|
extreme\:f(x,y)=\sqrt{x^{2}+y^{2}+64}
|
minimum x^2+2
|
minimum\:x^{2}+2
|
extreme f(x)=x^4(x-3)^2
|
extreme\:f(x)=x^{4}(x-3)^{2}
|
f(x,y)=40x^{3/4}y^{1/4}
|
f(x,y)=40x^{\frac{3}{4}}y^{\frac{1}{4}}
|
extreme y=9e^{-2t}-7e^{-3t}
|
extreme\:y=9e^{-2t}-7e^{-3t}
|
extreme 18x-8
|
extreme\:18x-8
|
extreme x^6-x^4+4x^3-2x
|
extreme\:x^{6}-x^{4}+4x^{3}-2x
|
extreme f(x)=(x^2-4)^4(x^2+1)^5
|
extreme\:f(x)=(x^{2}-4)^{4}(x^{2}+1)^{5}
|
extreme (2x-ln(3x))/x
|
extreme\:\frac{2x-\ln(3x)}{x}
|
asymptotes of f(x)=3-1/(x^2+1)
|
asymptotes\:f(x)=3-\frac{1}{x^{2}+1}
|
extreme f(x)=3x^4-54x^2+2
|
extreme\:f(x)=3x^{4}-54x^{2}+2
|
extreme f(x)=(log_{10}(x))/x
|
extreme\:f(x)=\frac{\log_{10}(x)}{x}
|
minimum f(x)=t^2-6t+8
|
minimum\:f(x)=t^{2}-6t+8
|
P(x,y)=3x+4y
|
P(x,y)=3x+4y
|
extreme f(1)=sqrt(x+3)
|
extreme\:f(1)=\sqrt{x+3}
|
extreme f(x)=-5/12 x^3-5x^2-15x-6
|
extreme\:f(x)=-\frac{5}{12}x^{3}-5x^{2}-15x-6
|
extreme y=(x^3+8)/x
|
extreme\:y=\frac{x^{3}+8}{x}
|
minimum f(x)=2x^3+21x^2+72x-2
|
minimum\:f(x)=2x^{3}+21x^{2}+72x-2
|
extreme f(x)=4cos(3x)
|
extreme\:f(x)=4\cos(3x)
|
ln(e^{(u+v)/2})-v
|
\ln(e^{\frac{u+v}{2}})-v
|
slope of 5x-4y=36
|
slope\:5x-4y=36
|
asymptotes of f(x)=((2x+3))/(5x-1)
|
asymptotes\:f(x)=\frac{(2x+3)}{5x-1}
|
extreme f(x)=6x^2-6x-72
|
extreme\:f(x)=6x^{2}-6x-72
|
extreme f(x)=4x^5-3x^4+x^3-2x^2+x-1
|
extreme\:f(x)=4x^{5}-3x^{4}+x^{3}-2x^{2}+x-1
|
f(x,y)=5x^2+3xy+2y^2
|
f(x,y)=5x^{2}+3xy+2y^{2}
|
f(x,y)=x^2-3xy+4y^2
|
f(x,y)=x^{2}-3xy+4y^{2}
|
f(x,y)=4x^2y-3xy^2+1y
|
f(x,y)=4x^{2}y-3xy^{2}+1y
|
extreme f(x)=3sin(x)+7cos(x)
|
extreme\:f(x)=3\sin(x)+7\cos(x)
|
f(x,y)=3x^2+8y^2
|
f(x,y)=3x^{2}+8y^{2}
|
extreme f(x,y)=7(x-y)e^{-x^2-y^2}
|
extreme\:f(x,y)=7(x-y)e^{-x^{2}-y^{2}}
|
extreme y=x^2-8x
|
extreme\:y=x^{2}-8x
|
inverse of y= 5/9 (x-32)
|
inverse\:y=\frac{5}{9}(x-32)
|
extreme (e^{sqrt(x)})/(sqrt(x))
|
extreme\:\frac{e^{\sqrt{x}}}{\sqrt{x}}
|
extreme f(x)=x-\sqrt[3]{x},-1<= x<= 7
|
extreme\:f(x)=x-\sqrt[3]{x},-1\le\:x\le\:7
|
extreme f(x)=-x^2-y^2+10x+10y
|
extreme\:f(x)=-x^{2}-y^{2}+10x+10y
|
extreme 2cos(x)+cos^2(x)
|
extreme\:2\cos(x)+\cos^{2}(x)
|
extreme x^{19/9}+x^{10/9}
|
extreme\:x^{\frac{19}{9}}+x^{\frac{10}{9}}
|
extreme-10x^4+4x^2-6
|
extreme\:-10x^{4}+4x^{2}-6
|
extreme f(x)=((e^x))/(1+x^2)
|
extreme\:f(x)=\frac{(e^{x})}{1+x^{2}}
|
extreme f(x)=2(4x)^x
|
extreme\:f(x)=2(4x)^{x}
|
f(x,y)=2x^3-6xy+3y^2
|
f(x,y)=2x^{3}-6xy+3y^{2}
|
inverse of f(x)=1-8x^3
|
inverse\:f(x)=1-8x^{3}
|
extreme y=sin(x)cos(x)
|
extreme\:y=\sin(x)\cos(x)
|
extreme f(x,y)=x^3+y^3+7xy
|
extreme\:f(x,y)=x^{3}+y^{3}+7xy
|
extreme f(x)=59.808^2-11.148x
|
extreme\:f(x)=59.808^{2}-11.148x
|
extreme f(x)=(x^2+2)/(x^2-16)
|
extreme\:f(x)=\frac{x^{2}+2}{x^{2}-16}
|
extreme \sqrt[3]{5x^3+5}
|
extreme\:\sqrt[3]{5x^{3}+5}
|
extreme f(x,y)=x^3+12xy+y^4
|
extreme\:f(x,y)=x^{3}+12xy+y^{4}
|
extreme f(x)=x^3e^{2x}+1
|
extreme\:f(x)=x^{3}e^{2x}+1
|
extreme f(x)=sin(x)+4
|
extreme\:f(x)=\sin(x)+4
|
extreme \sqrt[3]{27x^2}-2x,-1<= x<= 2
|
extreme\:\sqrt[3]{27x^{2}}-2x,-1\le\:x\le\:2
|
extreme-x^2+3x+5,-3<= x<= 3
|
extreme\:-x^{2}+3x+5,-3\le\:x\le\:3
|
asymptotes of (x-2)/((x+4)^2)
|
asymptotes\:\frac{x-2}{(x+4)^{2}}
|
extreme 72x+3x^2-2x^3
|
extreme\:72x+3x^{2}-2x^{3}
|
extreme f(x)=2x^3-x^2-4x+12
|
extreme\:f(x)=2x^{3}-x^{2}-4x+12
|
extreme f(x)=e^{x^2-x}
|
extreme\:f(x)=e^{x^{2}-x}
|