domain of f(x)= x/(12)
|
domain\:f(x)=\frac{x}{12}
|
extreme y=x^3-9x^2-48x
|
extreme\:y=x^{3}-9x^{2}-48x
|
f(x,y)=100(y-x^2)^2+(1-x)^2
|
f(x,y)=100(y-x^{2})^{2}+(1-x)^{2}
|
extreme f(x)=-(5x+3)e^{-2x}
|
extreme\:f(x)=-(5x+3)e^{-2x}
|
extreme (x^2)/(x^2+2x-15)
|
extreme\:\frac{x^{2}}{x^{2}+2x-15}
|
extreme f(x,y)=-x^2+5y^2+10x-10y-28
|
extreme\:f(x,y)=-x^{2}+5y^{2}+10x-10y-28
|
extreme y=(x-2)^2(x+4)
|
extreme\:y=(x-2)^{2}(x+4)
|
extreme f(x,y)=x^2-xy+y^2
|
extreme\:f(x,y)=x^{2}-xy+y^{2}
|
extreme f(x)=120x-0.4x^4+1000
|
extreme\:f(x)=120x-0.4x^{4}+1000
|
extreme f(x,y)=3x^2-xy+5y^2
|
extreme\:f(x,y)=3x^{2}-xy+5y^{2}
|
domain of f(x)=-3/4 x^4-x^3+3x^2
|
domain\:f(x)=-\frac{3}{4}x^{4}-x^{3}+3x^{2}
|
extreme f(x)=sqrt(-x^2+2x)
|
extreme\:f(x)=\sqrt{-x^{2}+2x}
|
extreme f(x)=-3/2 sin(3/2 x)
|
extreme\:f(x)=-\frac{3}{2}\sin(\frac{3}{2}x)
|
extreme-x^2+2
|
extreme\:-x^{2}+2
|
extreme-x^2+1
|
extreme\:-x^{2}+1
|
extreme f(x)=40-40e^{-x}
|
extreme\:f(x)=40-40e^{-x}
|
extreme f(x)=x(22-2x)(37/2-x)
|
extreme\:f(x)=x(22-2x)(\frac{37}{2}-x)
|
extreme f(x)=(4e^{-2x})/(2x+5)
|
extreme\:f(x)=\frac{4e^{-2x}}{2x+5}
|
extreme f(x)=(3-x)(x-5)^2
|
extreme\:f(x)=(3-x)(x-5)^{2}
|
extreme (X^2-1)(X^2-9)
|
extreme\:(X^{2}-1)(X^{2}-9)
|
extreme f(x)= x/(8x+3),8<= x<= 12
|
extreme\:f(x)=\frac{x}{8x+3},8\le\:x\le\:12
|
extreme f(x)=(x^2+4)(16-x^2)
|
extreme\:f(x)=(x^{2}+4)(16-x^{2})
|
extreme f(x)=x^4+x^3-3x^2+1
|
extreme\:f(x)=x^{4}+x^{3}-3x^{2}+1
|
extreme f(x)=9
|
extreme\:f(x)=9
|
f(x,y)=(e^{xy})
|
f(x,y)=(e^{xy})
|
extreme f(x)=ln(x^3-1)
|
extreme\:f(x)=\ln(x^{3}-1)
|
extreme f(x)=2x^2+3y^2-4x-5
|
extreme\:f(x)=2x^{2}+3y^{2}-4x-5
|
extreme f(x)=-8+4ln(x)
|
extreme\:f(x)=-8+4\ln(x)
|
u(x)=x^2+5w(x)sqrt(x+3)
|
u(x)=x^{2}+5w(x)\sqrt{x+3}
|
extreme f(x,y)=3x^2-2y^2
|
extreme\:f(x,y)=3x^{2}-2y^{2}
|
K(r,s)=4r-9s
|
K(r,s)=4r-9s
|
inverse of f(x)=ln(ln(ln(4x)))
|
inverse\:f(x)=\ln(\ln(\ln(4x)))
|
f(x,y)=3xy-x^3+y^3
|
f(x,y)=3xy-x^{3}+y^{3}
|
extreme f(x)=0.6x^2-660x-6000
|
extreme\:f(x)=0.6x^{2}-660x-6000
|
extreme f(x)=(x^2-1)/(x^3)
|
extreme\:f(x)=\frac{x^{2}-1}{x^{3}}
|
extreme f(x,y)=e^{-y}*(x^2+y^2)
|
extreme\:f(x,y)=e^{-y}\cdot\:(x^{2}+y^{2})
|
extreme f(x,y)=x^3-3x
|
extreme\:f(x,y)=x^{3}-3x
|
extreme f(x)=2x^2+3,-1<= x<= 2
|
extreme\:f(x)=2x^{2}+3,-1\le\:x\le\:2
|
extreme f(x)=sin(pix)(-1/3 , 1/3)
|
extreme\:f(x)=\sin(πx)(-\frac{1}{3},\frac{1}{3})
|
extreme f(x)=-2x^2(x+6)
|
extreme\:f(x)=-2x^{2}(x+6)
|
extreme f(x,y)=3x^2-6x+4y^2+8
|
extreme\:f(x,y)=3x^{2}-6x+4y^{2}+8
|
extreme f(x)=2x^3+11x^2-8x-12
|
extreme\:f(x)=2x^{3}+11x^{2}-8x-12
|
extreme f(x)=4sqrt(x^2+1)-3x
|
extreme\:f(x)=4\sqrt{x^{2}+1}-3x
|
extreme x^3-12x^2+36x+1
|
extreme\:x^{3}-12x^{2}+36x+1
|
extreme f(x)=75-x^2
|
extreme\:f(x)=75-x^{2}
|
extreme f(x)=(x^3)/3-3x^2+8x-2,0<= x<= 3
|
extreme\:f(x)=\frac{x^{3}}{3}-3x^{2}+8x-2,0\le\:x\le\:3
|
extreme f(x,y)=2x^3-6xy+3y^2
|
extreme\:f(x,y)=2x^{3}-6xy+3y^{2}
|
extreme f(x)=((45-x)x-(10+24x))
|
extreme\:f(x)=((45-x)x-(10+24x))
|
extreme y=7+5x-5x^2
|
extreme\:y=7+5x-5x^{2}
|
T(x,y)=46-2x^2-3y^2
|
T(x,y)=46-2x^{2}-3y^{2}
|
domain of (x^3+4x^2)/(6x^2-1)
|
domain\:\frac{x^{3}+4x^{2}}{6x^{2}-1}
|
extreme f(x)=(-x^{2/3})(x-3)
|
extreme\:f(x)=(-x^{\frac{2}{3}})(x-3)
|
minimum f(x,y)=2y^2+2xy+x^2-16x-20y
|
minimum\:f(x,y)=2y^{2}+2xy+x^{2}-16x-20y
|
extreme f(x)=f(x,y)=3x^3-9x+9xy^2
|
extreme\:f(x)=f(x,y)=3x^{3}-9x+9xy^{2}
|
extreme f(x)=5x+5x^{-1}
|
extreme\:f(x)=5x+5x^{-1}
|
extreme x+2sin(x)
|
extreme\:x+2\sin(x)
|
extreme f(x)=sin((pix)/2)
|
extreme\:f(x)=\sin(\frac{πx}{2})
|
extreme-0.2x^3-0.7x^2+3x-6
|
extreme\:-0.2x^{3}-0.7x^{2}+3x-6
|
minimum h(t)= t/(t-2)[3.5]
|
minimum\:h(t)=\frac{t}{t-2}[3.5]
|
Q(t)=(r3-2r2+6t+2)3
|
Q(t)=(r3-2r2+6t+2)3
|
extreme f(x)=(x^3)/3+(x^2)/2-6x+10
|
extreme\:f(x)=\frac{x^{3}}{3}+\frac{x^{2}}{2}-6x+10
|
range of f(x)=x^2-2
|
range\:f(x)=x^{2}-2
|
inverse of f(x)=(x+15)/(x-5)
|
inverse\:f(x)=\frac{x+15}{x-5}
|
extreme f(x)=-sqrt(9-x^2)
|
extreme\:f(x)=-\sqrt{9-x^{2}}
|
extreme f(x)=3+(x+2)^2
|
extreme\:f(x)=3+(x+2)^{2}
|
extreme f(x)=2x^2+x-5
|
extreme\:f(x)=2x^{2}+x-5
|
f(x)=ln(y-x^2)+ln(y-2x)
|
f(x)=\ln(y-x^{2})+\ln(y-2x)
|
extreme f(x)=10000+2500x-5x^2
|
extreme\:f(x)=10000+2500x-5x^{2}
|
extreme f(x)=2x^2+y^3-6xy+2
|
extreme\:f(x)=2x^{2}+y^{3}-6xy+2
|
extreme f(x)=4x^2+3
|
extreme\:f(x)=4x^{2}+3
|
extreme f(x)=(1/12 x^3-9x+5)
|
extreme\:f(x)=(\frac{1}{12}x^{3}-9x+5)
|
minimum f(x)=2x^2+18x+16
|
minimum\:f(x)=2x^{2}+18x+16
|
critical points of f(x)=t^4-16t^3+22t^2
|
critical\:points\:f(x)=t^{4}-16t^{3}+22t^{2}
|
minimum y=3x^2=12x+11
|
minimum\:y=3x^{2}=12x+11
|
extreme f(x)=x^3-4x^2-3x-6
|
extreme\:f(x)=x^{3}-4x^{2}-3x-6
|
extreme f(x)= 5/(x^2+1)
|
extreme\:f(x)=\frac{5}{x^{2}+1}
|
minimum f(x)-1/2 (x+1)^2-3/2
|
minimum\:f(x)-\frac{1}{2}(x+1)^{2}-\frac{3}{2}
|
extreme f(x)=x^3-4x^2-3x+1
|
extreme\:f(x)=x^{3}-4x^{2}-3x+1
|
extreme f(x)=x^3-4x^2-3x+3
|
extreme\:f(x)=x^{3}-4x^{2}-3x+3
|
extreme f(x)=(x^2+2y^2)e^{1-x^2-y^2}
|
extreme\:f(x)=(x^{2}+2y^{2})e^{1-x^{2}-y^{2}}
|
inverse of f(x)=-(x+1)^3-2
|
inverse\:f(x)=-(x+1)^{3}-2
|
minimum f(x,y)=2xy-x^3-y^2
|
minimum\:f(x,y)=2xy-x^{3}-y^{2}
|
extreme f(t)=-0.01t^2+4t
|
extreme\:f(t)=-0.01t^{2}+4t
|
extreme 2x+2/3
|
extreme\:2x+\frac{2}{3}
|
f(x,y)=x2+xy+y2(-1,1)
|
f(x,y)=x2+xy+y2(-1,1)
|
extreme f(x)=x^8(x-3)^7
|
extreme\:f(x)=x^{8}(x-3)^{7}
|
extreme f(x)= 1/(x+1)
|
extreme\:f(x)=\frac{1}{x+1}
|
extreme f(x)=x^5-2x^3+2
|
extreme\:f(x)=x^{5}-2x^{3}+2
|
extreme f(x)=x(15-40+2x)(40/2-x)
|
extreme\:f(x)=x(15-40+2x)(\frac{40}{2}-x)
|
extreme f(x)=(3x^2+3)^2
|
extreme\:f(x)=(3x^{2}+3)^{2}
|
extreme f(x)=4x^5+25x^4-40x^3-2
|
extreme\:f(x)=4x^{5}+25x^{4}-40x^{3}-2
|
inverse of f(x)=x^2-6x+5
|
inverse\:f(x)=x^{2}-6x+5
|
extreme f(x)=x^3-2x^2+1x
|
extreme\:f(x)=x^{3}-2x^{2}+1x
|
extreme f(x)=(x^2-6x)(y^2-7y)
|
extreme\:f(x)=(x^{2}-6x)(y^{2}-7y)
|
extreme f(x)=-5sec(x)
|
extreme\:f(x)=-5\sec(x)
|
extreme f(x)=(1)^{3n}
|
extreme\:f(x)=(1)^{3n}
|
extreme (2x+1)/(3x^2-39x+108)
|
extreme\:\frac{2x+1}{3x^{2}-39x+108}
|
extreme y=2x^2+8x-1
|
extreme\:y=2x^{2}+8x-1
|
minimum x^{2/3}(x-4)
|
minimum\:x^{\frac{2}{3}}(x-4)
|
extreme f(x)= 4/3 x^2-4x
|
extreme\:f(x)=\frac{4}{3}x^{2}-4x
|