extreme f(x)=-2x+3ln(2x)
|
extreme\:f(x)=-2x+3\ln(2x)
|
f(x,y)=sqrt(2-x+y)
|
f(x,y)=\sqrt{2-x+y}
|
domain of sqrt(x/(x-2))
|
domain\:\sqrt{\frac{x}{x-2}}
|
extreme f(x)=16x+9x^{-1}
|
extreme\:f(x)=16x+9x^{-1}
|
extreme-1683x^2+83000x+10000
|
extreme\:-1683x^{2}+83000x+10000
|
extreme f(x,y)=x^2+y^2-2y
|
extreme\:f(x,y)=x^{2}+y^{2}-2y
|
f(x,y)=x^2y^3+x^4y
|
f(x,y)=x^{2}y^{3}+x^{4}y
|
extreme f(x)=2x^2-4x+5
|
extreme\:f(x)=2x^{2}-4x+5
|
extreme f(x,y)=x^2+y^2+xy
|
extreme\:f(x,y)=x^{2}+y^{2}+xy
|
extreme f(x)=x^3+9
|
extreme\:f(x)=x^{3}+9
|
extreme f(x)=(x^2-7)/(x+4)
|
extreme\:f(x)=\frac{x^{2}-7}{x+4}
|
extreme points of f(x)=ln(7-3x^2)
|
extreme\:points\:f(x)=\ln(7-3x^{2})
|
extreme f(x)=2x^2-4x-2
|
extreme\:f(x)=2x^{2}-4x-2
|
extreme f(x)=4sqrt(x)-x
|
extreme\:f(x)=4\sqrt{x}-x
|
extreme f(x)=x^3-9x^2+6
|
extreme\:f(x)=x^{3}-9x^{2}+6
|
extreme f(x)=x^3-9x^2+7
|
extreme\:f(x)=x^{3}-9x^{2}+7
|
extreme 30x^3-19x^2-14x+8
|
extreme\:30x^{3}-19x^{2}-14x+8
|
extreme f(x)=x^3-2
|
extreme\:f(x)=x^{3}-2
|
extreme f(x)=sqrt(1-x^2),0<= x<= 1
|
extreme\:f(x)=\sqrt{1-x^{2}},0\le\:x\le\:1
|
minimum 2x^2+12x-2
|
minimum\:2x^{2}+12x-2
|
f(x,y)=xe^{-x}+ye^{-2y}
|
f(x,y)=xe^{-x}+ye^{-2y}
|
extreme y=-x^6-3x^3+x+1,(0,1)
|
extreme\:y=-x^{6}-3x^{3}+x+1,(0,1)
|
inverse of f(x)=((x-8)^7)/7
|
inverse\:f(x)=\frac{(x-8)^{7}}{7}
|
extreme f(x,y)=x^2+12*x*y+8*y^2
|
extreme\:f(x,y)=x^{2}+12\cdot\:x\cdot\:y+8\cdot\:y^{2}
|
extreme f(x)=-5x^2+4x-6
|
extreme\:f(x)=-5x^{2}+4x-6
|
extreme f(x)=9sin(x)
|
extreme\:f(x)=9\sin(x)
|
P(q,s)=q+6+s
|
P(q,s)=q+6+s
|
extreme f(x)=3x+(48)/x
|
extreme\:f(x)=3x+\frac{48}{x}
|
f(x,y)=x^2+xy+y^2+3/x+3/y+2
|
f(x,y)=x^{2}+xy+y^{2}+\frac{3}{x}+\frac{3}{y}+2
|
y=2+s+2(-3-2s+x)
|
y=2+s+2(-3-2s+x)
|
f(x,y)=3xy+xy^2
|
f(x,y)=3xy+xy^{2}
|
extreme f(x,y)=4+x^3-3xy+y^3
|
extreme\:f(x,y)=4+x^{3}-3xy+y^{3}
|
f(x)=log_{3}(x)
|
f(x)=\log_{3}(x)
|
extreme f(x)=x^4(1-x)^8
|
extreme\:f(x)=x^{4}(1-x)^{8}
|
extreme f(x)=-xe^{-x/4}
|
extreme\:f(x)=-xe^{-\frac{x}{4}}
|
extreme f(x)=2x^3+6x^2-18x+1,-6<= x<= 2
|
extreme\:f(x)=2x^{3}+6x^{2}-18x+1,-6\le\:x\le\:2
|
extreme f(x,y)=x^2+y^2-12x+4y-11
|
extreme\:f(x,y)=x^{2}+y^{2}-12x+4y-11
|
extreme f(x)=6x+7x^{(6/7)}
|
extreme\:f(x)=6x+7x^{(\frac{6}{7})}
|
extreme f(x)=49x+9/x
|
extreme\:f(x)=49x+\frac{9}{x}
|
extreme x(2^{-5x})
|
extreme\:x(2^{-5x})
|
extreme f(x)=x^{2x}
|
extreme\:f(x)=x^{2x}
|
f(x,y)=x^2+y^2-6x-2y+12
|
f(x,y)=x^{2}+y^{2}-6x-2y+12
|
extreme f(x)=xln(x/6)
|
extreme\:f(x)=x\ln(\frac{x}{6})
|
domain of (x-3)/(x^2-1)
|
domain\:\frac{x-3}{x^{2}-1}
|
extreme f(x)=-x^2+3x^2+9x+1
|
extreme\:f(x)=-x^{2}+3x^{2}+9x+1
|
extreme f(x)= t/(t-1)(2.3)
|
extreme\:f(x)=\frac{t}{t-1}(2.3)
|
extreme f(x)=(x^2+1)(4x^2-1)
|
extreme\:f(x)=(x^{2}+1)(4x^{2}-1)
|
extreme 72y^2+x^2-x^2y
|
extreme\:72y^{2}+x^{2}-x^{2}y
|
extreme f(x)=x^4-32x+3
|
extreme\:f(x)=x^{4}-32x+3
|
extreme f(x)=|x^3-6x-4|
|
extreme\:f(x)=\left|x^{3}-6x-4\right|
|
extreme f(x)=x^{2/3}(20-3x)
|
extreme\:f(x)=x^{\frac{2}{3}}(20-3x)
|
f(x,y)=3x^2y^3-y^2-x^2+6
|
f(x,y)=3x^{2}y^{3}-y^{2}-x^{2}+6
|
extreme f(x)=(x^2+x+6)/(x-1)
|
extreme\:f(x)=\frac{x^{2}+x+6}{x-1}
|
domain of ln(x^2+7)
|
domain\:\ln(x^{2}+7)
|
domain of (sqrt(36-x^2))/(sqrt(x+3))
|
domain\:\frac{\sqrt{36-x^{2}}}{\sqrt{x+3}}
|
extreme y=x^{4/7}(11/4+x)
|
extreme\:y=x^{\frac{4}{7}}(\frac{11}{4}+x)
|
extreme f(x)=ln(x^2+9)
|
extreme\:f(x)=\ln(x^{2}+9)
|
extreme 1/3 x^3+2x^2+4x+1
|
extreme\:\frac{1}{3}x^{3}+2x^{2}+4x+1
|
extreme f(x)=x^6-x^4
|
extreme\:f(x)=x^{6}-x^{4}
|
f(x,y)=3x^{(4)}y^{(5)}+6x-7y
|
f(x,y)=3x^{(4)}y^{(5)}+6x-7y
|
extreme f(x)=5x^5-75x^3
|
extreme\:f(x)=5x^{5}-75x^{3}
|
extreme (4x)/(x^2+4)
|
extreme\:\frac{4x}{x^{2}+4}
|
extreme f(x)=-0.018x^3+0.215x^2+0.057x+1
|
extreme\:f(x)=-0.018x^{3}+0.215x^{2}+0.057x+1
|
extreme f(x)=2x^3+9x^2-60x+7,-5<= x<= 5
|
extreme\:f(x)=2x^{3}+9x^{2}-60x+7,-5\le\:x\le\:5
|
extreme f(x)=x^3+4x^2+4x
|
extreme\:f(x)=x^{3}+4x^{2}+4x
|
domain of s/(s^2-16)
|
domain\:\frac{s}{s^{2}-16}
|
extreme f(x)=(x+2)^2(x-3)^3
|
extreme\:f(x)=(x+2)^{2}(x-3)^{3}
|
extreme y=(x-2)^3(x+2)
|
extreme\:y=(x-2)^{3}(x+2)
|
extreme f(x)=100-1/4 (x^2+33x)
|
extreme\:f(x)=100-\frac{1}{4}(x^{2}+33x)
|
extreme f(x,y)=-2x^2+5y^2-9x+9y+6
|
extreme\:f(x,y)=-2x^{2}+5y^{2}-9x+9y+6
|
extreme f(x)=x^3+y^2-3x-4y+7
|
extreme\:f(x)=x^{3}+y^{2}-3x-4y+7
|
extreme x^5-15x^3+3
|
extreme\:x^{5}-15x^{3}+3
|
h(x)=(θx^4+3θx^3+3θx^2+θx)/(x^3+2x^2+x)
|
h(x)=\frac{θx^{4}+3θx^{3}+3θx^{2}+θx}{x^{3}+2x^{2}+x}
|
f(x,y)=(x^2+2y^2)e^{1-x^2-y^2}
|
f(x,y)=(x^{2}+2y^{2})e^{1-x^{2}-y^{2}}
|
extreme f(x)=(16-2x)(12-2x)x
|
extreme\:f(x)=(16-2x)(12-2x)x
|
inverse of f(x)=2-x
|
inverse\:f(x)=2-x
|
f(x,y)=x^2+xy+y^2-2x-y
|
f(x,y)=x^{2}+xy+y^{2}-2x-y
|
V(A,t)=A^t
|
V(A,t)=A^{t}
|
extreme f(x)=x^3+32x^2-6x+8,-4<= x<= 2
|
extreme\:f(x)=x^{3}+32x^{2}-6x+8,-4\le\:x\le\:2
|
extreme f(x)=x+x/9
|
extreme\:f(x)=x+\frac{x}{9}
|
minimum 280
|
minimum\:280
|
minimum x^4+3x^3-5x^2-6x+6
|
minimum\:x^{4}+3x^{3}-5x^{2}-6x+6
|
extreme f(x)=3x^3-36x^2+108x+4,0<= x<= 9
|
extreme\:f(x)=3x^{3}-36x^{2}+108x+4,0\le\:x\le\:9
|
y=xln(z)
|
y=x\ln(z)
|
extreme f(x)=(24)/x+4pix^2
|
extreme\:f(x)=\frac{24}{x}+4πx^{2}
|
inverse of (x-14)^2
|
inverse\:(x-14)^{2}
|
extreme (4x)/(x^2+1),-3<= x<= 0
|
extreme\:\frac{4x}{x^{2}+1},-3\le\:x\le\:0
|
extreme f(x)=(x^3)/3-x^2-8x-4
|
extreme\:f(x)=\frac{x^{3}}{3}-x^{2}-8x-4
|
extreme f(x)=x^4-5x^3+1.1x^2-10.2x+1
|
extreme\:f(x)=x^{4}-5x^{3}+1.1x^{2}-10.2x+1
|
extreme (x-1)(x+9)^2
|
extreme\:(x-1)(x+9)^{2}
|
extreme f(x)=2csc(x)
|
extreme\:f(x)=2\csc(x)
|
extreme f(x)=(x^2-36)^{1/11},-7<= x<= 6
|
extreme\:f(x)=(x^{2}-36)^{\frac{1}{11}},-7\le\:x\le\:6
|
extreme x^{1/5}(x^2-4)
|
extreme\:x^{\frac{1}{5}}(x^{2}-4)
|
extreme f(x)=cos((4x)/3)
|
extreme\:f(x)=\cos(\frac{4x}{3})
|
extreme (5x)/(1-x)
|
extreme\:\frac{5x}{1-x}
|
inverse of f(x)=(1-e^{-x})/(1+e^{-x)}
|
inverse\:f(x)=\frac{1-e^{-x}}{1+e^{-x}}
|
K(r,s)=3r-7s
|
K(r,s)=3r-7s
|
extreme f(x,y)=-y^2+y^2x-x^2+x
|
extreme\:f(x,y)=-y^{2}+y^{2}x-x^{2}+x
|
extreme f(x)=y=x^3-9x^2+7x-6
|
extreme\:f(x)=y=x^{3}-9x^{2}+7x-6
|
extreme f(x)=7ln(3xe^{-x})
|
extreme\:f(x)=7\ln(3xe^{-x})
|