domain of f(x)=49x+72
|
domain\:f(x)=49x+72
|
extreme f(x)=x^3-12x+18
|
extreme\:f(x)=x^{3}-12x+18
|
minimum f(x)=2x^3-20x+50x-6
|
minimum\:f(x)=2x^{3}-20x+50x-6
|
extreme f(x)=e^{-x^2-y^2}
|
extreme\:f(x)=e^{-x^{2}-y^{2}}
|
extreme f(x)=x-(-2)x^{-1}
|
extreme\:f(x)=x-(-2)x^{-1}
|
f(x,y)=6x^2y-9xy
|
f(x,y)=6x^{2}y-9xy
|
extreme f(x)=ln(2x^2-2x+3)
|
extreme\:f(x)=\ln(2x^{2}-2x+3)
|
minimum x+2-x^2
|
minimum\:x+2-x^{2}
|
extreme f(x)=12x^4-80x^3-24x^2+240x+720
|
extreme\:f(x)=12x^{4}-80x^{3}-24x^{2}+240x+720
|
extreme y=(2(x+3))/(x^2+x-2)
|
extreme\:y=\frac{2(x+3)}{x^{2}+x-2}
|
f(x,y)=ln(x)+y^3
|
f(x,y)=\ln(x)+y^{3}
|
domain of f(x)=(x^2-11x-12)/(x+4)
|
domain\:f(x)=\frac{x^{2}-11x-12}{x+4}
|
extreme f(x)=2x^3-33x^2+180x+6
|
extreme\:f(x)=2x^{3}-33x^{2}+180x+6
|
extreme f(x)=(x^4-32x^2-4)
|
extreme\:f(x)=(x^{4}-32x^{2}-4)
|
extreme f(x)=5x^3e^{-x},-1<= x<= 4
|
extreme\:f(x)=5x^{3}e^{-x},-1\le\:x\le\:4
|
extreme f(x,y)=x^2+2x+y^2-8y+8
|
extreme\:f(x,y)=x^{2}+2x+y^{2}-8y+8
|
extreme f(x)=x^2*e^x-2x*e^x+2e^x
|
extreme\:f(x)=x^{2}\cdot\:e^{x}-2x\cdot\:e^{x}+2e^{x}
|
extreme f(x)=(x^3+4)/(x^2)
|
extreme\:f(x)=\frac{x^{3}+4}{x^{2}}
|
extreme f(x)=-x^2-y^2+8x+6y
|
extreme\:f(x)=-x^{2}-y^{2}+8x+6y
|
extreme (4x^2)/(x-2)
|
extreme\:\frac{4x^{2}}{x-2}
|
f(x)=6-3x-2y
|
f(x)=6-3x-2y
|
extreme f(x)=x^2+x+y^2-4y
|
extreme\:f(x)=x^{2}+x+y^{2}-4y
|
extreme points of f(x)=x^2+8x+1
|
extreme\:points\:f(x)=x^{2}+8x+1
|
G(x,y)=40000x+30000y-8x^2-15y^2-10xy
|
G(x,y)=40000x+30000y-8x^{2}-15y^{2}-10xy
|
extreme f(x,y)=x^3-9xy+y^3
|
extreme\:f(x,y)=x^{3}-9xy+y^{3}
|
extreme y=f(x)=-x(x-1)^5
|
extreme\:y=f(x)=-x(x-1)^{5}
|
extreme f(x)=(12)/x+3pix^2
|
extreme\:f(x)=\frac{12}{x}+3πx^{2}
|
extreme f(x)=x^{4/7}(11/4+x)
|
extreme\:f(x)=x^{\frac{4}{7}}(\frac{11}{4}+x)
|
extreme 0.5x^2-2x-7
|
extreme\:0.5x^{2}-2x-7
|
extreme f(x)=x^2-4y^2-4
|
extreme\:f(x)=x^{2}-4y^{2}-4
|
f(x,y)=(5-sqrt(x^2+3y))/y
|
f(x,y)=\frac{5-\sqrt{x^{2}+3y}}{y}
|
extreme 2cos(x)+sin(2x),0<= x<= pi/2
|
extreme\:2\cos(x)+\sin(2x),0\le\:x\le\:\frac{π}{2}
|
extreme f(x)=xln(x)+1
|
extreme\:f(x)=x\ln(x)+1
|
y=-2x
|
y=-2x
|
extreme f(x)=(4x^3)/3-7x+6
|
extreme\:f(x)=\frac{4x^{3}}{3}-7x+6
|
extreme f(x)=x^4+x^3+x^2+1
|
extreme\:f(x)=x^{4}+x^{3}+x^{2}+1
|
extreme f(x)=3x-6cos(x)
|
extreme\:f(x)=3x-6\cos(x)
|
extreme f(x)=x^{4/5}-7
|
extreme\:f(x)=x^{\frac{4}{5}}-7
|
extreme f(x)=x^{4/5}-2
|
extreme\:f(x)=x^{\frac{4}{5}}-2
|
extreme f(x)=x^{4/5}-5
|
extreme\:f(x)=x^{\frac{4}{5}}-5
|
extreme f(x)=x^{-1/2}(x-3)
|
extreme\:f(x)=x^{-\frac{1}{2}}(x-3)
|
extreme f(x)= 1/4 x^2-1/2 x+13/4
|
extreme\:f(x)=\frac{1}{4}x^{2}-\frac{1}{2}x+\frac{13}{4}
|
domain of (20x^3+30x^2)/(15x^5)
|
domain\:\frac{20x^{3}+30x^{2}}{15x^{5}}
|
extreme f(x)=6x^2-12[-4.1]
|
extreme\:f(x)=6x^{2}-12[-4.1]
|
extreme 7x^5-105x^3
|
extreme\:7x^{5}-105x^{3}
|
extreme f(x)=x^3-9x^2+15x+7
|
extreme\:f(x)=x^{3}-9x^{2}+15x+7
|
extreme f(x)=(6x-1)/x
|
extreme\:f(x)=\frac{6x-1}{x}
|
domain of f(x)=7-16t
|
domain\:f(x)=7-16t
|
domain of f(x)=-sqrt(2x)+2
|
domain\:f(x)=-\sqrt{2x}+2
|
extreme f(x)=x^2*(2-x)^2
|
extreme\:f(x)=x^{2}\cdot\:(2-x)^{2}
|
extreme f(x,y)=4x^2-8x+5y^2+6
|
extreme\:f(x,y)=4x^{2}-8x+5y^{2}+6
|
extreme-(x^2-y^2)e^{-x^2-y^2}
|
extreme\:-(x^{2}-y^{2})e^{-x^{2}-y^{2}}
|
extreme 6sqrt(3cos(x)+6sin^2(x))
|
extreme\:6\sqrt{3\cos(x)+6\sin^{2}(x)}
|
extreme ((4x-12))/((x-2)^2)
|
extreme\:\frac{(4x-12)}{(x-2)^{2}}
|
extreme f(x,y)=x+3y
|
extreme\:f(x,y)=x+3y
|
extreme f(x)=7-x^4+2x^2-y^2
|
extreme\:f(x)=7-x^{4}+2x^{2}-y^{2}
|
extreme x^3-9x^2
|
extreme\:x^{3}-9x^{2}
|
extreme f(x)= 1/3 x^3+x^2-48x+20
|
extreme\:f(x)=\frac{1}{3}x^{3}+x^{2}-48x+20
|
f(x,y)=((xy))/((x-y))
|
f(x,y)=\frac{(xy)}{(x-y)}
|
asymptotes of f(x)= 3/4 csc(-x)+3
|
asymptotes\:f(x)=\frac{3}{4}\csc(-x)+3
|
extreme f(x)=e^{x^3-12x+5}
|
extreme\:f(x)=e^{x^{3}-12x+5}
|
extreme f(x,y)= pi/3*y*(x^2+2.8*x+7.84)
|
extreme\:f(x,y)=\frac{π}{3}\cdot\:y\cdot\:(x^{2}+2.8\cdot\:x+7.84)
|
y=xsqrt(re)
|
y=x\sqrt{re}
|
extreme ln(x^2+8)
|
extreme\:\ln(x^{2}+8)
|
f(x,y)=x^3+8y^3-6xy+5
|
f(x,y)=x^{3}+8y^{3}-6xy+5
|
f(x,y)=(-3x^2-4y^2-9x+5y+3)
|
f(x,y)=(-3x^{2}-4y^{2}-9x+5y+3)
|
extreme y=x^2e^x
|
extreme\:y=x^{2}e^{x}
|
extreme f(y)=6x^2+7y^2
|
extreme\:f(y)=6x^{2}+7y^{2}
|
extreme f(x)=(t^2)/(1+t^3)
|
extreme\:f(x)=\frac{t^{2}}{1+t^{3}}
|
extreme-x^3+6x^2+x-1
|
extreme\:-x^{3}+6x^{2}+x-1
|
asymptotes of (x-1)/(x^2-4x+3)
|
asymptotes\:\frac{x-1}{x^{2}-4x+3}
|
extreme f(x,y)=x^3-6xy+y^3+4
|
extreme\:f(x,y)=x^{3}-6xy+y^{3}+4
|
extreme-x^3+6x^2+x+1
|
extreme\:-x^{3}+6x^{2}+x+1
|
extreme (x^2+1)/((x-1)^2)
|
extreme\:\frac{x^{2}+1}{(x-1)^{2}}
|
w(x,y)=x+xy
|
w(x,y)=x+xy
|
extreme f(x)=5-sqrt(x)
|
extreme\:f(x)=5-\sqrt{x}
|
f(x,y)=x^2+3y^2+4x-9y+3
|
f(x,y)=x^{2}+3y^{2}+4x-9y+3
|
extreme x^3+12x^2-18
|
extreme\:x^{3}+12x^{2}-18
|
extreme f(x)=(x-y)(xy-1)
|
extreme\:f(x)=(x-y)(xy-1)
|
F(x,y)=x^2y^3-xy-y
|
F(x,y)=x^{2}y^{3}-xy-y
|
extreme f(x)= x/(x-9)
|
extreme\:f(x)=\frac{x}{x-9}
|
inverse of f(x)=(2x-1)/(-x+5)
|
inverse\:f(x)=\frac{2x-1}{-x+5}
|
extreme sin^4(x)
|
extreme\:\sin^{4}(x)
|
extreme f(x,y)=15x^2+16y^2
|
extreme\:f(x,y)=15x^{2}+16y^{2}
|
extreme f(x)= x/(x-5)
|
extreme\:f(x)=\frac{x}{x-5}
|
extreme 4x+3y
|
extreme\:4x+3y
|
extreme (11)/(3x^2+1.5)
|
extreme\:\frac{11}{3x^{2}+1.5}
|
extreme F(x)=3x^4-4x^3-12x^2+2
|
extreme\:F(x)=3x^{4}-4x^{3}-12x^{2}+2
|
extreme x^2+6x+5
|
extreme\:x^{2}+6x+5
|
extreme f(x,y)= 1/((1+x*y))
|
extreme\:f(x,y)=\frac{1}{(1+x\cdot\:y)}
|
minimum 0.6*(x^4)-0.3*(x^3)-3*(x^2)+2*x
|
minimum\:0.6\cdot\:(x^{4})-0.3\cdot\:(x^{3})-3\cdot\:(x^{2})+2\cdot\:x
|
symmetry y=-2x^2+3
|
symmetry\:y=-2x^{2}+3
|
extreme f(x)=3x^4-8x^3+6x^2+3
|
extreme\:f(x)=3x^{4}-8x^{3}+6x^{2}+3
|
extreme f(x)=x^3-4x^2-16x-5
|
extreme\:f(x)=x^{3}-4x^{2}-16x-5
|
extreme f(x)=e^{x^2-9},-3<= x<= 3
|
extreme\:f(x)=e^{x^{2}-9},-3\le\:x\le\:3
|
minimum x^2-100x
|
minimum\:x^{2}-100x
|
extreme f(x)=2-x^2-xy-y^2
|
extreme\:f(x)=2-x^{2}-xy-y^{2}
|
extreme f(x)=-2x^4+20x^2-18
|
extreme\:f(x)=-2x^{4}+20x^{2}-18
|
f(x,y)=-x^2-y^2+20x+20y
|
f(x,y)=-x^{2}-y^{2}+20x+20y
|
extreme f(x)=x+9/x+4,1<= x<= 18
|
extreme\:f(x)=x+\frac{9}{x}+4,1\le\:x\le\:18
|