extreme f(x)=ln(3x^2+3x-10)
|
extreme\:f(x)=\ln(3x^{2}+3x-10)
|
extreme f(x)=(3x)/(x^2-9)
|
extreme\:f(x)=\frac{3x}{x^{2}-9}
|
range of (3+3x)/(x-2)
|
range\:\frac{3+3x}{x-2}
|
extreme y=x^2-8x+7
|
extreme\:y=x^{2}-8x+7
|
extreme f(x,y)=x^2+y^2+x^2y+6
|
extreme\:f(x,y)=x^{2}+y^{2}+x^{2}y+6
|
extreme f(x,y)=x^2+y^2+x^2y+9
|
extreme\:f(x,y)=x^{2}+y^{2}+x^{2}y+9
|
extreme f(x,y)=2x^3+xy^2+5x^2+y^2+7
|
extreme\:f(x,y)=2x^{3}+xy^{2}+5x^{2}+y^{2}+7
|
extreme f(x)=-x^2+2x+4,-2<= x<= 4
|
extreme\:f(x)=-x^{2}+2x+4,-2\le\:x\le\:4
|
extreme x^{2/3}(x-5)
|
extreme\:x^{\frac{2}{3}}(x-5)
|
extreme x^{2/3}(x-2)
|
extreme\:x^{\frac{2}{3}}(x-2)
|
extreme f(x)=100x(2x+3)(x-5)
|
extreme\:f(x)=100x(2x+3)(x-5)
|
f(x,y)=sqrt(9-x^2)+sqrt(4-y^2)
|
f(x,y)=\sqrt{9-x^{2}}+\sqrt{4-y^{2}}
|
extreme f(x)=x^3+12x
|
extreme\:f(x)=x^{3}+12x
|
range of-5cos(x/3+(pi)/2)-4
|
range\:-5\cos(\frac{x}{3}+\frac{\pi}{2})-4
|
extreme f(x)=2x^3-6x,0<= x<= 3
|
extreme\:f(x)=2x^{3}-6x,0\le\:x\le\:3
|
extreme (x^4)/(x^2-1)
|
extreme\:\frac{x^{4}}{x^{2}-1}
|
f(x,y)=3sqrt(16-x^2-y^2)
|
f(x,y)=3\sqrt{16-x^{2}-y^{2}}
|
extreme 1+5/x-9/(x^2)
|
extreme\:1+\frac{5}{x}-\frac{9}{x^{2}}
|
extreme f(x)=x^2+xy+y^2-2x-y
|
extreme\:f(x)=x^{2}+xy+y^{2}-2x-y
|
extreme f(x)=(2x^2)/(x-2),-2<= x<= 1
|
extreme\:f(x)=\frac{2x^{2}}{x-2},-2\le\:x\le\:1
|
extreme f(x)=x+sin(2x),(0,pi)
|
extreme\:f(x)=x+\sin(2x),(0,π)
|
extreme x^3-x^2-8x+8
|
extreme\:x^{3}-x^{2}-8x+8
|
extreme f(x,y)=2xy-4x-3y
|
extreme\:f(x,y)=2xy-4x-3y
|
f(x,y)=x^2+y^2-y^2-xy-x-y
|
f(x,y)=x^{2}+y^{2}-y^{2}-xy-x-y
|
inverse of f(x)=-3x+10
|
inverse\:f(x)=-3x+10
|
extreme f(x)=4x^2-32ln(x)
|
extreme\:f(x)=4x^{2}-32\ln(x)
|
y=-sqrt(6-z^2-x^2)
|
y=-\sqrt{6-z^{2}-x^{2}}
|
extreme f(x,y)=-x^2-2y^2+xy+x+3y
|
extreme\:f(x,y)=-x^{2}-2y^{2}+xy+x+3y
|
extreme f(x)=-2/3 x^3+2x^2+6x-50
|
extreme\:f(x)=-\frac{2}{3}x^{3}+2x^{2}+6x-50
|
extreme f(x)=x^5-20x^4+8,0<= x<= 17
|
extreme\:f(x)=x^{5}-20x^{4}+8,0\le\:x\le\:17
|
P(q,r)=4-q+r
|
P(q,r)=4-q+r
|
y=Insqrt(1-2x)
|
y=In\sqrt{1-2x}
|
extreme y=x^2-12x+35
|
extreme\:y=x^{2}-12x+35
|
extreme 3x^2-3
|
extreme\:3x^{2}-3
|
extreme f(x)=-5/(x^2)
|
extreme\:f(x)=-\frac{5}{x^{2}}
|
slope intercept of 3x-y=7
|
slope\:intercept\:3x-y=7
|
extreme (e^{3.4x})/(x^3)
|
extreme\:\frac{e^{3.4x}}{x^{3}}
|
extreme f(x)=-x^2+x-2
|
extreme\:f(x)=-x^{2}+x-2
|
extreme-2x^3+3x^2
|
extreme\:-2x^{3}+3x^{2}
|
extreme f(x)=x^3-3x+3,0<= x<= 2
|
extreme\:f(x)=x^{3}-3x+3,0\le\:x\le\:2
|
extreme f(x,y)=2xy-1/2 (x^4+y^4)+1
|
extreme\:f(x,y)=2xy-\frac{1}{2}(x^{4}+y^{4})+1
|
f(x,y)=x+y+1/x+4/y
|
f(x,y)=x+y+\frac{1}{x}+\frac{4}{y}
|
minimum 3x^4-7x^2+6x^2-5x-8
|
minimum\:3x^{4}-7x^{2}+6x^{2}-5x-8
|
minimum f(x,y)=9-2x+4y-x^2-4y^2
|
minimum\:f(x,y)=9-2x+4y-x^{2}-4y^{2}
|
extreme f(x,y)=2+2x+2y-x^2-y^2
|
extreme\:f(x,y)=2+2x+2y-x^{2}-y^{2}
|
domain of (x^3+1+x^2+x)/(|x+1|)
|
domain\:\frac{x^{3}+1+x^{2}+x}{|x+1|}
|
inverse of f(x)=(-2)/5 x+3
|
inverse\:f(x)=\frac{-2}{5}x+3
|
P(x,y)=200x^{1/2}y^{1/2}
|
P(x,y)=200x^{\frac{1}{2}}y^{\frac{1}{2}}
|
extreme f(x)=(x^2)/(9-x^2)
|
extreme\:f(x)=\frac{x^{2}}{9-x^{2}}
|
f(x,y)=x^2+y^2+2/(xy)
|
f(x,y)=x^{2}+y^{2}+\frac{2}{xy}
|
extreme 190+8x^3+x^4
|
extreme\:190+8x^{3}+x^{4}
|
extreme f(x)=x(25-37+2x)(37/2-x)
|
extreme\:f(x)=x(25-37+2x)(\frac{37}{2}-x)
|
f(s,t)=s^2t+ln(t^2-s)
|
f(s,t)=s^{2}t+\ln(t^{2}-s)
|
extreme x^3-6x^2+9x+7
|
extreme\:x^{3}-6x^{2}+9x+7
|
extreme x^2+xy-y^2
|
extreme\:x^{2}+xy-y^{2}
|
extreme f(x)= 1/3 x^3-3x^2+5x
|
extreme\:f(x)=\frac{1}{3}x^{3}-3x^{2}+5x
|
inverse of f(x)=(-x+17)/7
|
inverse\:f(x)=\frac{-x+17}{7}
|
f(u,v)=3u-7v
|
f(u,v)=3u-7v
|
extreme f(x)=x^4-4x^2-2
|
extreme\:f(x)=x^{4}-4x^{2}-2
|
extreme sin(3X)
|
extreme\:\sin(3X)
|
extreme f(x)=2x^3+3x^2-72x+4
|
extreme\:f(x)=2x^{3}+3x^{2}-72x+4
|
extreme f(x)=x+cos(2x),0<= x<= pi
|
extreme\:f(x)=x+\cos(2x),0\le\:x\le\:π
|
extreme f(x)=x^3-6x+1
|
extreme\:f(x)=x^{3}-6x+1
|
extreme 3x^3+y^2-9x+4y
|
extreme\:3x^{3}+y^{2}-9x+4y
|
extreme f(x)=5x^6-6x^5+1
|
extreme\:f(x)=5x^{6}-6x^{5}+1
|
f(x)=3x-x^3-2y^2+y^4
|
f(x)=3x-x^{3}-2y^{2}+y^{4}
|
inverse of f(x)=(25)/(x-58)-23
|
inverse\:f(x)=\frac{25}{x-58}-23
|
extreme f(x)=4x^4-2(4)^2x^3
|
extreme\:f(x)=4x^{4}-2(4)^{2}x^{3}
|
extreme f(x)=(2x)/(x^2+2)
|
extreme\:f(x)=\frac{2x}{x^{2}+2}
|
f(x,y)=sqrt(400-49x^2-36y^2)
|
f(x,y)=\sqrt{400-49x^{2}-36y^{2}}
|
extreme f(x)=(3(x-4)^2)/(x+1)
|
extreme\:f(x)=\frac{3(x-4)^{2}}{x+1}
|
f(x,y)=x^2y+xy^2+2
|
f(x,y)=x^{2}y+xy^{2}+2
|
extreme f(x,y)=y^3-x^3-3xy
|
extreme\:f(x,y)=y^{3}-x^{3}-3xy
|
extreme f(x)=5x+10a
|
extreme\:f(x)=5x+10a
|
extreme f(x,y)=x^2+y^2-20x+16y-9
|
extreme\:f(x,y)=x^{2}+y^{2}-20x+16y-9
|
minimum 4-6x+x^2
|
minimum\:4-6x+x^{2}
|
asymptotes of f(x)=x^2-3x-10
|
asymptotes\:f(x)=x^{2}-3x-10
|
extreme f(x)=6sin(3x)
|
extreme\:f(x)=6\sin(3x)
|
extreme f(x)=(e^x)/(7x)
|
extreme\:f(x)=\frac{e^{x}}{7x}
|
extreme f(x)=12+6x^2-x^3
|
extreme\:f(x)=12+6x^{2}-x^{3}
|
extreme f(x)=(3x^2)/2
|
extreme\:f(x)=\frac{3x^{2}}{2}
|
extreme-x^2+3x-5
|
extreme\:-x^{2}+3x-5
|
extreme-x^4+x^2
|
extreme\:-x^{4}+x^{2}
|
extreme f(x,y)=xy-x^2-y^2+3+9y
|
extreme\:f(x,y)=xy-x^{2}-y^{2}+3+9y
|
extreme f(x)=x^2+3x-7
|
extreme\:f(x)=x^{2}+3x-7
|
extreme f(0)=x^2-2x-3
|
extreme\:f(0)=x^{2}-2x-3
|
extreme x^4-16x^2+3
|
extreme\:x^{4}-16x^{2}+3
|
perpendicular 5x+3y=3
|
perpendicular\:5x+3y=3
|
extreme f(x)=8-5x+x^2
|
extreme\:f(x)=8-5x+x^{2}
|
minimum xe^{-5x}
|
minimum\:xe^{-5x}
|
extreme 1/3 x^3-9x^2+72x+2
|
extreme\:\frac{1}{3}x^{3}-9x^{2}+72x+2
|
extreme f(x)=(e^{x^2+x+2})/x
|
extreme\:f(x)=\frac{e^{x^{2}+x+2}}{x}
|
extreme xsqrt(9-x)
|
extreme\:x\sqrt{9-x}
|
extreme f(x)=2x^3-6x^2-18x+54
|
extreme\:f(x)=2x^{3}-6x^{2}-18x+54
|
extreme f(x)= 1/4 e^x+e^{-x}
|
extreme\:f(x)=\frac{1}{4}e^{x}+e^{-x}
|
extreme f(x)=(5x)/(x^2+16),0<= x<= 12
|
extreme\:f(x)=\frac{5x}{x^{2}+16},0\le\:x\le\:12
|
intercepts of f(x)=y=2x+2
|
intercepts\:f(x)=y=2x+2
|
extreme x^3-27x+48
|
extreme\:x^{3}-27x+48
|
extreme sin^2(x)-cos(x)
|
extreme\:\sin^{2}(x)-\cos(x)
|
P(x,y)=0.3x^2+0.2y^2+0.1xy-14x-10y+2000
|
P(x,y)=0.3x^{2}+0.2y^{2}+0.1xy-14x-10y+2000
|