extreme f(x,y)=x^2+xy+y^2-3x
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-3x
|
extreme-x^3-3x^2
|
extreme\:-x^{3}-3x^{2}
|
extreme f(x)=2x-4sin(x),0<= x<= 2pi
|
extreme\:f(x)=2x-4\sin(x),0\le\:x\le\:2π
|
extreme f(x)=(x^3)/3-2x^2+4,-2<= x<= 1
|
extreme\:f(x)=\frac{x^{3}}{3}-2x^{2}+4,-2\le\:x\le\:1
|
extreme f(x,y)=x^4+6y^2-4xy^3-1
|
extreme\:f(x,y)=x^{4}+6y^{2}-4xy^{3}-1
|
extreme 3(x-2)
|
extreme\:3(x-2)
|
periodicity of 6sin(t+4)
|
periodicity\:6\sin(t+4)
|
extreme f(x)=x-2sin(x),0<= x<= 2pi
|
extreme\:f(x)=x-2\sin(x),0\le\:x\le\:2π
|
extreme f(x)=2sin(x)+2cos(x)
|
extreme\:f(x)=2\sin(x)+2\cos(x)
|
f(x,y)=y^2x-yx^2+xy
|
f(x,y)=y^{2}x-yx^{2}+xy
|
extreme f(x)=x^3-3x+7
|
extreme\:f(x)=x^{3}-3x+7
|
extreme f(x)=y^4-4y^3+2x^2+8xy
|
extreme\:f(x)=y^{4}-4y^{3}+2x^{2}+8xy
|
extreme f(x)=x^2e^{-9x}
|
extreme\:f(x)=x^{2}e^{-9x}
|
f(x,y)=xy-x^2-y^2-2x-2y+4
|
f(x,y)=xy-x^{2}-y^{2}-2x-2y+4
|
extreme y=(ln(x))/x
|
extreme\:y=\frac{\ln(x)}{x}
|
extreme x^2+y^2+x^2y+4
|
extreme\:x^{2}+y^{2}+x^{2}y+4
|
range of (sqrt(y^2-1))/y
|
range\:\frac{\sqrt{y^{2}-1}}{y}
|
range of-2x^2+8x-5
|
range\:-2x^{2}+8x-5
|
extreme f(x)=4x^5-8x^4-5x^3+10x^2+x-2
|
extreme\:f(x)=4x^{5}-8x^{4}-5x^{3}+10x^{2}+x-2
|
extreme f(x)=8x-9x^{8/9}
|
extreme\:f(x)=8x-9x^{\frac{8}{9}}
|
extreme f(x,y)=50y^2+x^2-x^2y
|
extreme\:f(x,y)=50y^{2}+x^{2}-x^{2}y
|
f(x,y)=sqrt(4-4x^2-y^2)
|
f(x,y)=\sqrt{4-4x^{2}-y^{2}}
|
extreme f(x)=2-4x^2
|
extreme\:f(x)=2-4x^{2}
|
extreme f(x)=(e^x+e^{-x})/2
|
extreme\:f(x)=\frac{e^{x}+e^{-x}}{2}
|
f(x,y)=x^3+y^3-3x-12y+2
|
f(x,y)=x^{3}+y^{3}-3x-12y+2
|
extreme f(x)=(x-1)(x+1)(x+4)
|
extreme\:f(x)=(x-1)(x+1)(x+4)
|
extreme (x+1)/(x^2-5x+6)
|
extreme\:\frac{x+1}{x^{2}-5x+6}
|
inflection points of (x-2)/(sqrt(x^2+1))
|
inflection\:points\:\frac{x-2}{\sqrt{x^{2}+1}}
|
f(x,y)=x^2+4xy+y^2
|
f(x,y)=x^{2}+4xy+y^{2}
|
extreme f(x)=x^3-18x^2+96x
|
extreme\:f(x)=x^{3}-18x^{2}+96x
|
extreme f(x)=x^{1/3}(x^2-9)
|
extreme\:f(x)=x^{\frac{1}{3}}(x^{2}-9)
|
extreme f(x,y)=3x^2+2y^2-xy-4x-7y+12
|
extreme\:f(x,y)=3x^{2}+2y^{2}-xy-4x-7y+12
|
extreme (x^3-4)/(x^2)
|
extreme\:\frac{x^{3}-4}{x^{2}}
|
extreme f(x)=x^4e^x-4
|
extreme\:f(x)=x^{4}e^{x}-4
|
extreme f(x)=-x^3+12x
|
extreme\:f(x)=-x^{3}+12x
|
extreme f(x)=5-7x^2
|
extreme\:f(x)=5-7x^{2}
|
extreme f(x)=x^3-6x^2+6
|
extreme\:f(x)=x^{3}-6x^{2}+6
|
extreme f(x)=sqrt(x^2+4)
|
extreme\:f(x)=\sqrt{x^{2}+4}
|
domain of f(x)=sqrt(6x-30)
|
domain\:f(x)=\sqrt{6x-30}
|
extreme f(x)=-2x^3+33x^2-108x+1
|
extreme\:f(x)=-2x^{3}+33x^{2}-108x+1
|
extreme f(x)=5x^2sqrt(x+1)
|
extreme\:f(x)=5x^{2}\sqrt{x+1}
|
extreme f(x)=3cos^2(x),0<= x<= pi
|
extreme\:f(x)=3\cos^{2}(x),0\le\:x\le\:π
|
extreme f(x)=-8x^{6/5}+4x^{2/5}
|
extreme\:f(x)=-8x^{\frac{6}{5}}+4x^{\frac{2}{5}}
|
extreme f(x,y)=x^2+3xy+y^2
|
extreme\:f(x,y)=x^{2}+3xy+y^{2}
|
extreme f(x)=4-(x-5)^5
|
extreme\:f(x)=4-(x-5)^{5}
|
extreme f(x)=-3xsqrt(x+1)
|
extreme\:f(x)=-3x\sqrt{x+1}
|
extreme f(x)=-20x^6-5x^3+x^2-17
|
extreme\:f(x)=-20x^{6}-5x^{3}+x^{2}-17
|
extreme f(x)=(pir^2)/2+((76-pix-x))/2*x
|
extreme\:f(x)=\frac{πr^{2}}{2}+\frac{(76-πx-x)}{2}\cdot\:x
|
domain of 2sqrt(x)+1
|
domain\:2\sqrt{x}+1
|
extreme 10x^2y-5x^2-4y^2-x^4-2y^4
|
extreme\:10x^{2}y-5x^{2}-4y^{2}-x^{4}-2y^{4}
|
extreme f(x,y)=x^2+y^2-2y+1
|
extreme\:f(x,y)=x^{2}+y^{2}-2y+1
|
extreme sqrt(36-x^2)-sqrt(x+3)
|
extreme\:\sqrt{36-x^{2}}-\sqrt{x+3}
|
f(x,y)=(x^2+y)e^{y/2}
|
f(x,y)=(x^{2}+y)e^{\frac{y}{2}}
|
h(t,v)=5t^2+vt
|
h(t,v)=5t^{2}+vt
|
extreme xsqrt(5-x)
|
extreme\:x\sqrt{5-x}
|
extreme-x^3+6x^2-9x
|
extreme\:-x^{3}+6x^{2}-9x
|
extreme ln(u)
|
extreme\:\ln(u)
|
inverse of f(x)=(x+2)^5+2
|
inverse\:f(x)=(x+2)^{5}+2
|
extreme f(x)=18y^2+x^2-x^2y
|
extreme\:f(x)=18y^{2}+x^{2}-x^{2}y
|
extreme ye^{x^2-y^2}
|
extreme\:ye^{x^{2}-y^{2}}
|
P(x,y)=3x^2y+4xy^2-y^4
|
P(x,y)=3x^{2}y+4xy^{2}-y^{4}
|
extreme f(x)=3x^5-20x^3+16
|
extreme\:f(x)=3x^{5}-20x^{3}+16
|
extreme (x^3)/(x-2)
|
extreme\:\frac{x^{3}}{x-2}
|
extreme f(x)=sqrt(-x^2+4),-1<= x<= 2
|
extreme\:f(x)=\sqrt{-x^{2}+4},-1\le\:x\le\:2
|
extreme f(x)=20x^3+9x^2-24x+12,0<= x<= 1
|
extreme\:f(x)=20x^{3}+9x^{2}-24x+12,0\le\:x\le\:1
|
extreme 5x^3-30x^2+45x
|
extreme\:5x^{3}-30x^{2}+45x
|
extreme f(x)=-x+2cos(x),0<= x<= 2pi
|
extreme\:f(x)=-x+2\cos(x),0\le\:x\le\:2π
|
extreme+sqrt((x-1)^2)
|
extreme\:+\sqrt{(x-1)^{2}}
|
extreme f(x)=2x^{5/3}-3x^{2/3}
|
extreme\:f(x)=2x^{\frac{5}{3}}-3x^{\frac{2}{3}}
|
extreme y=sin(x)cos(x),0<= x<= pi
|
extreme\:y=\sin(x)\cos(x),0\le\:x\le\:π
|
f(x,y)=2x^4-x^2+10y^2
|
f(x,y)=2x^{4}-x^{2}+10y^{2}
|
extreme f(x,y)=x^3-y^3-6xy-4
|
extreme\:f(x,y)=x^{3}-y^{3}-6xy-4
|
extreme f(x)=x^3-3x^2-9x+15
|
extreme\:f(x)=x^{3}-3x^{2}-9x+15
|
extreme f(x)=x^4-8x^3+3
|
extreme\:f(x)=x^{4}-8x^{3}+3
|
extreme f(x)=x^3-2x^4
|
extreme\:f(x)=x^{3}-2x^{4}
|
extreme x^{1/3}(x+4)
|
extreme\:x^{\frac{1}{3}}(x+4)
|
periodicity of f(x)=cos((8pi)/(31))
|
periodicity\:f(x)=\cos(\frac{8\pi}{31})
|
extreme f(x,y)=xy(7+x)(y-3)
|
extreme\:f(x,y)=xy(7+x)(y-3)
|
extreme f(x)= 1/(x-5)
|
extreme\:f(x)=\frac{1}{x-5}
|
extreme f(x)=x^{15/7}-x^{8/7}
|
extreme\:f(x)=x^{\frac{15}{7}}-x^{\frac{8}{7}}
|
extreme (x-9)^2-2
|
extreme\:(x-9)^{2}-2
|
extreme f(x)=-(15)/(x^2-19x+16)
|
extreme\:f(x)=-\frac{15}{x^{2}-19x+16}
|
extreme f(x)=x+9/x ,0.2<= x<= 12
|
extreme\:f(x)=x+\frac{9}{x},0.2\le\:x\le\:12
|
extreme f(x)=x^2-6x-1
|
extreme\:f(x)=x^{2}-6x-1
|
extreme f(x)=5-x+x^2
|
extreme\:f(x)=5-x+x^{2}
|
f(x,y)=(-2x)/(sqrt(y))+e^x-13
|
f(x,y)=\frac{-2x}{\sqrt{y}}+e^{x}-13
|
domain of x^2+10x+25
|
domain\:x^{2}+10x+25
|
extreme f(x)=-(5x^3)/3+10x^2-15x
|
extreme\:f(x)=-\frac{5x^{3}}{3}+10x^{2}-15x
|
f(x,y)=2xe^{-y}
|
f(x,y)=2xe^{-y}
|
extreme f(x)=((x^2-x+4))/((x+1))
|
extreme\:f(x)=\frac{(x^{2}-x+4)}{(x+1)}
|
extreme f(x)=5cos(x),0<= x<= 2pi
|
extreme\:f(x)=5\cos(x),0\le\:x\le\:2π
|
extreme f(x)=5sin^2(x)
|
extreme\:f(x)=5\sin^{2}(x)
|
extreme f(x)=36+3x^2-2x^3
|
extreme\:f(x)=36+3x^{2}-2x^{3}
|
extreme f(x)=3x^5+5x^3
|
extreme\:f(x)=3x^{5}+5x^{3}
|
extreme f(x,y)=x^2+xy+y^2-4x-2y
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-4x-2y
|
domain of sqrt(x+5)-7
|
domain\:\sqrt{x+5}-7
|
extreme f(x)=4x+9x^{-1}
|
extreme\:f(x)=4x+9x^{-1}
|
f(x,y)=ln(4-x^2-y^2)-sqrt(y)
|
f(x,y)=\ln(4-x^{2}-y^{2})-\sqrt{y}
|
f(x,y)=x^2+2xy-y^2
|
f(x,y)=x^{2}+2xy-y^{2}
|
f(x,y)=x^2y-5xy^3
|
f(x,y)=x^{2}y-5xy^{3}
|