extreme (x+4)/(x-3)
|
extreme\:\frac{x+4}{x-3}
|
f(x,y)=4xy^2-2x^2y-x
|
f(x,y)=4xy^{2}-2x^{2}y-x
|
f(x,y)=14x^2-2x^3+4xy
|
f(x,y)=14x^{2}-2x^{3}+4xy
|
extreme f(x)= 1/3 x^3-5x^2+21x-16
|
extreme\:f(x)=\frac{1}{3}x^{3}-5x^{2}+21x-16
|
range of 3x+7
|
range\:3x+7
|
extreme f(x,y)=x^2y-xy+3y^2
|
extreme\:f(x,y)=x^{2}y-xy+3y^{2}
|
f(x,y)=x^2+y^2+xy
|
f(x,y)=x^{2}+y^{2}+xy
|
f(x,y)=x^3+y^2-6x^2+y-1
|
f(x,y)=x^{3}+y^{2}-6x^{2}+y-1
|
extreme f(x)=x^2-5x+1
|
extreme\:f(x)=x^{2}-5x+1
|
f(x,y)=e^{4xy}+5y
|
f(x,y)=e^{4xy}+5y
|
extreme f(x)= x/2-cos(x)
|
extreme\:f(x)=\frac{x}{2}-\cos(x)
|
extreme f(x)=-2(4x-5)e^{4x}
|
extreme\:f(x)=-2(4x-5)e^{4x}
|
extreme f(x)=(2cos(θ)+cos^2(θ))
|
extreme\:f(x)=(2\cos(θ)+\cos^{2}(θ))
|
f(x,y)=2x^2-x^4+3y^2-y^3
|
f(x,y)=2x^{2}-x^{4}+3y^{2}-y^{3}
|
extreme f(x)=2sin(x)cos(x)
|
extreme\:f(x)=2\sin(x)\cos(x)
|
distance (1,4)(4,8)
|
distance\:(1,4)(4,8)
|
domain of f(x)=(5x)/(27-x^3)
|
domain\:f(x)=\frac{5x}{27-x^{3}}
|
extreme f(x,y)=x^2+y^2-xy-x-y
|
extreme\:f(x,y)=x^{2}+y^{2}-xy-x-y
|
extreme f(x)=x^2+xy+y^2-7y+16
|
extreme\:f(x)=x^{2}+xy+y^{2}-7y+16
|
extreme f(x,y)=x^2+xy+y^2+7y
|
extreme\:f(x,y)=x^{2}+xy+y^{2}+7y
|
extreme f(x)=(7(x-1)^2)/(x+9),(-21,-9)
|
extreme\:f(x)=\frac{7(x-1)^{2}}{x+9},(-21,-9)
|
extreme (7x-2)/3
|
extreme\:\frac{7x-2}{3}
|
extreme f(x)=x^3+y^3-21xy
|
extreme\:f(x)=x^{3}+y^{3}-21xy
|
f(x,y)=x^3+y^3-3x^2-6y^2-9x
|
f(x,y)=x^{3}+y^{3}-3x^{2}-6y^{2}-9x
|
extreme h(x)=x^3-12x
|
extreme\:h(x)=x^{3}-12x
|
extreme f(x)=x^2-11
|
extreme\:f(x)=x^{2}-11
|
range of f(x)=4x^2+5x-1
|
range\:f(x)=4x^{2}+5x-1
|
f(x,y)=x^2y-2xy+2y^2x
|
f(x,y)=x^{2}y-2xy+2y^{2}x
|
extreme (2(x+2)^2)/(x^2)
|
extreme\:\frac{2(x+2)^{2}}{x^{2}}
|
extreme 2x^3-2x+6
|
extreme\:2x^{3}-2x+6
|
extreme f(x)=-3(5-3x)e^{-4x}
|
extreme\:f(x)=-3(5-3x)e^{-4x}
|
extreme (2x-5)/(x^2-4)
|
extreme\:\frac{2x-5}{x^{2}-4}
|
f(x,y)=x^2y+3xy^2
|
f(x,y)=x^{2}y+3xy^{2}
|
f(x)=x^4+y^4-4xy+1
|
f(x)=x^{4}+y^{4}-4xy+1
|
extreme f(x)=(3x-6)/(x+2)
|
extreme\:f(x)=\frac{3x-6}{x+2}
|
critical points of f(x)=t^4-24t^3+154t^2
|
critical\:points\:f(x)=t^{4}-24t^{3}+154t^{2}
|
f(x,y)=1-x^2+2y^2
|
f(x,y)=1-x^{2}+2y^{2}
|
f(x,y)=60x-2x^2-3y^2+30y
|
f(x,y)=60x-2x^{2}-3y^{2}+30y
|
extreme (x^2)/(x-4)
|
extreme\:\frac{x^{2}}{x-4}
|
f(x,y)=x^3-3xy+4y^2
|
f(x,y)=x^{3}-3xy+4y^{2}
|
f(x,y)=|x-y|
|
f(x,y)=\left|x-y\right|
|
extreme f(x,y)=x^3-y^3+3xy
|
extreme\:f(x,y)=x^{3}-y^{3}+3xy
|
extreme f(x)=sqrt(10x^2+36x+36)
|
extreme\:f(x)=\sqrt{10x^{2}+36x+36}
|
extreme f(x)=x^4-4x^3+12
|
extreme\:f(x)=x^{4}-4x^{3}+12
|
inverse of 7/(x^2+1)
|
inverse\:\frac{7}{x^{2}+1}
|
extreme f(x)=4x^3+48x^2+180x
|
extreme\:f(x)=4x^{3}+48x^{2}+180x
|
extreme f(x)=(x^2-7x+26)/(x-5)
|
extreme\:f(x)=\frac{x^{2}-7x+26}{x-5}
|
extreme f(x)=x^3-x^2-8x+4
|
extreme\:f(x)=x^{3}-x^{2}-8x+4
|
extreme f(x)=x^3-x^2-8x+8
|
extreme\:f(x)=x^{3}-x^{2}-8x+8
|
f(x,y)=18x^2-32y^2-36x-128y-110
|
f(x,y)=18x^{2}-32y^{2}-36x-128y-110
|
extreme f(x,y)=x^3+y^3-24xy
|
extreme\:f(x,y)=x^{3}+y^{3}-24xy
|
extreme f(x)= 8/x+2pix^2
|
extreme\:f(x)=\frac{8}{x}+2πx^{2}
|
f(x,y)=sqrt(400-9x^2-36y^2)
|
f(x,y)=\sqrt{400-9x^{2}-36y^{2}}
|
extreme f(x,y)= 1/3 x^3-x
|
extreme\:f(x,y)=\frac{1}{3}x^{3}-x
|
extreme f(x,y)=4-x^4+2x^2-y^2
|
extreme\:f(x,y)=4-x^{4}+2x^{2}-y^{2}
|
extreme f(x)=(x^2-1)^3,-1<= x<= 6
|
extreme\:f(x)=(x^{2}-1)^{3},-1\le\:x\le\:6
|
extreme f(x)=(x^2-1)^3,-1<= x<= 4
|
extreme\:f(x)=(x^{2}-1)^{3},-1\le\:x\le\:4
|
f(x,y)=x^2+2xy
|
f(x,y)=x^{2}+2xy
|
extreme f(x)=4sin(x)+2
|
extreme\:f(x)=4\sin(x)+2
|
extreme f(x)=9xln(x)
|
extreme\:f(x)=9x\ln(x)
|
extreme f(x)=8x+9x^{8/9}
|
extreme\:f(x)=8x+9x^{\frac{8}{9}}
|
f(x,y)=3x^2-2xy+y^2-8y
|
f(x,y)=3x^{2}-2xy+y^{2}-8y
|
extreme f(x)=-5x+3ln(4x)
|
extreme\:f(x)=-5x+3\ln(4x)
|
f(x,y)=xy+4x
|
f(x,y)=xy+4x
|
intercepts of f(x)=(4x+9)/(3x-6)
|
intercepts\:f(x)=\frac{4x+9}{3x-6}
|
g(t)=3[u(t-6)-u(t-7)]
|
g(t)=3[u(t-6)-u(t-7)]
|
extreme f(x)=(3x)/(x^2+1)
|
extreme\:f(x)=\frac{3x}{x^{2}+1}
|
extreme f(x)=(x^3+8)/x
|
extreme\:f(x)=\frac{x^{3}+8}{x}
|
P(x,y)=-3(20x-400)^2-6/7 (2y-44)^2+8
|
P(x,y)=-3(20x-400)^{2}-\frac{6}{7}(2y-44)^{2}+8
|
extreme f(x)=x^3-9/2 x^2+1
|
extreme\:f(x)=x^{3}-\frac{9}{2}x^{2}+1
|
y=2x^2+z^2
|
y=2x^{2}+z^{2}
|
f(x,y)=1-3x^4-6x^2y+2y^3
|
f(x,y)=1-3x^{4}-6x^{2}y+2y^{3}
|
extreme f(x)=8x^3+13x
|
extreme\:f(x)=8x^{3}+13x
|
extreme f(x,y)=18y^2+x^2-x^2y
|
extreme\:f(x,y)=18y^{2}+x^{2}-x^{2}y
|
extreme 2(1/2)^x
|
extreme\:2(\frac{1}{2})^{x}
|
intercepts of f(x)=y=x+7
|
intercepts\:f(x)=y=x+7
|
extreme f(x)=((x-4)^2)/(x+10)
|
extreme\:f(x)=\frac{(x-4)^{2}}{x+10}
|
minimum 2
|
minimum\:2
|
extreme f(x)=4x-1
|
extreme\:f(x)=4x-1
|
extreme-2x^3+3x^2-12x
|
extreme\:-2x^{3}+3x^{2}-12x
|
extreme f(x)=2y^2+x^2-x^2y
|
extreme\:f(x)=2y^{2}+x^{2}-x^{2}y
|
extreme f(x)= x/(x^2+100)
|
extreme\:f(x)=\frac{x}{x^{2}+100}
|
extreme f(x)= 4/3 x^3+4x^2-252x+7
|
extreme\:f(x)=\frac{4}{3}x^{3}+4x^{2}-252x+7
|
extreme f(x)=4x-9x^{4/9}
|
extreme\:f(x)=4x-9x^{\frac{4}{9}}
|
f(x,y)=3x^3-9x+9xy^2
|
f(x,y)=3x^{3}-9x+9xy^{2}
|
extreme f(x)=2x^2-8x+y^2-8y+2
|
extreme\:f(x)=2x^{2}-8x+y^{2}-8y+2
|
f(x,y)=6x+3y-7
|
f(x,y)=6x+3y-7
|
extreme-2x^2+3x-1
|
extreme\:-2x^{2}+3x-1
|
extreme f(x,y)=2x^3-y^2+2xy+1
|
extreme\:f(x,y)=2x^{3}-y^{2}+2xy+1
|
f(x,y)=sqrt(1-xy)
|
f(x,y)=\sqrt{1-xy}
|
extreme f(x)= 1/7 x^7-x
|
extreme\:f(x)=\frac{1}{7}x^{7}-x
|
f(x,y)= 1/x+xy-8/y
|
f(x,y)=\frac{1}{x}+xy-\frac{8}{y}
|
extreme f(x)=e^{xy}-x
|
extreme\:f(x)=e^{xy}-x
|
minimum y=3x^2-12x+13
|
minimum\:y=3x^{2}-12x+13
|
extreme f(x)= 1/4 x^4-2x^3+3
|
extreme\:f(x)=\frac{1}{4}x^{4}-2x^{3}+3
|
inverse of f(x)=e^{(sqrt(x))/3}
|
inverse\:f(x)=e^{\frac{\sqrt{x}}{3}}
|
extreme f(x)=((-8x^3+3x^2))/4
|
extreme\:f(x)=\frac{(-8x^{3}+3x^{2})}{4}
|
extreme f(x)=2x^3+x^2-4x+4
|
extreme\:f(x)=2x^{3}+x^{2}-4x+4
|
extreme f(x)=(5+x)^5
|
extreme\:f(x)=(5+x)^{5}
|
f(x,y)=y(e^x-1)
|
f(x,y)=y(e^{x}-1)
|