extreme f(x)=sqrt(x^2+9)
|
extreme\:f(x)=\sqrt{x^{2}+9}
|
extreme 4/(x+6)
|
extreme\:\frac{4}{x+6}
|
f(x,y)=113x+15y-x^2-2y^2+3xy
|
f(x,y)=113x+15y-x^{2}-2y^{2}+3xy
|
range of f(x)=x^2-8x+12
|
range\:f(x)=x^{2}-8x+12
|
extreme f(x)=-x^3+6x^2+15x+4
|
extreme\:f(x)=-x^{3}+6x^{2}+15x+4
|
extreme (csc(x))/(1+csc(x))
|
extreme\:\frac{\csc(x)}{1+\csc(x)}
|
extreme f(x)=x^{8/3},-8<= x<= 1
|
extreme\:f(x)=x^{\frac{8}{3}},-8\le\:x\le\:1
|
extreme f(x)=-2sin^2(x), pi/4 <= x<= 2pi
|
extreme\:f(x)=-2\sin^{2}(x),\frac{π}{4}\le\:x\le\:2π
|
extreme f(x)=e^x-2x
|
extreme\:f(x)=e^{x}-2x
|
f(x,y)=ln(x^2+4y^2-4)
|
f(x,y)=\ln(x^{2}+4y^{2}-4)
|
extreme f(x)=cos^2(x),0<= x<= pi
|
extreme\:f(x)=\cos^{2}(x),0\le\:x\le\:π
|
extreme f(x)=x^3+2x^2-7x
|
extreme\:f(x)=x^{3}+2x^{2}-7x
|
f(x,y)=xe^{-3x^2-3y^2}
|
f(x,y)=xe^{-3x^{2}-3y^{2}}
|
minimum f(x)=xsqrt(1-x^2)
|
minimum\:f(x)=x\sqrt{1-x^{2}}
|
inverse of f(x)=7x^2+2
|
inverse\:f(x)=7x^{2}+2
|
inverse of f(x)= x/(x-20)
|
inverse\:f(x)=\frac{x}{x-20}
|
extreme f(x,y)=2x^2-8x+y^2-8y+2
|
extreme\:f(x,y)=2x^{2}-8x+y^{2}-8y+2
|
extreme 1/(x-2)
|
extreme\:\frac{1}{x-2}
|
extreme f(x)=-(5e^{-x})/(5-3x)
|
extreme\:f(x)=-\frac{5e^{-x}}{5-3x}
|
extreme f(x,y)=3x^2-2xy+y^2-8y
|
extreme\:f(x,y)=3x^{2}-2xy+y^{2}-8y
|
extreme f(x,y)=x^2+y^2-6y+9
|
extreme\:f(x,y)=x^{2}+y^{2}-6y+9
|
extreme f(x)=x^2,-1<= x<= 0
|
extreme\:f(x)=x^{2},-1\le\:x\le\:0
|
extreme 3x^2-5x+2
|
extreme\:3x^{2}-5x+2
|
extreme f(x)=x^4-4x^3+16x+4
|
extreme\:f(x)=x^{4}-4x^{3}+16x+4
|
extreme f(x)=cos(5x)+sqrt(3)sin(5x)
|
extreme\:f(x)=\cos(5x)+\sqrt{3}\sin(5x)
|
parity f(x)=2x-tan(x)
|
parity\:f(x)=2x-\tan(x)
|
extreme f(x)=x^7-7x
|
extreme\:f(x)=x^{7}-7x
|
extreme f(x,y)=18x^2-32y^2-36x-128y-110
|
extreme\:f(x,y)=18x^{2}-32y^{2}-36x-128y-110
|
minimum y=2x^2-8x+8
|
minimum\:y=2x^{2}-8x+8
|
extreme f(x,y)=(4x^2+10y^2)e^{-y}
|
extreme\:f(x,y)=(4x^{2}+10y^{2})e^{-y}
|
P(x,y)=6x^2-xy-y^2+y+8x+2
|
P(x,y)=6x^{2}-xy-y^{2}+y+8x+2
|
extreme f(x)=(x+2)^{4/3}
|
extreme\:f(x)=(x+2)^{\frac{4}{3}}
|
extreme f(x)=x^3-3x^2+1,-1/2 <= x<= 4
|
extreme\:f(x)=x^{3}-3x^{2}+1,-\frac{1}{2}\le\:x\le\:4
|
extreme f(x)=(x^2-10x+25)/(x-10)
|
extreme\:f(x)=\frac{x^{2}-10x+25}{x-10}
|
inverse of f(x)= 5/x+4
|
inverse\:f(x)=\frac{5}{x}+4
|
f(x,y)=3x^2+xy-y^2
|
f(x,y)=3x^{2}+xy-y^{2}
|
extreme f(x)=(x^5)/(20)-4x^3
|
extreme\:f(x)=\frac{x^{5}}{20}-4x^{3}
|
extreme x^3+9x^2
|
extreme\:x^{3}+9x^{2}
|
extreme f(x)=x^3+y^3-27xy
|
extreme\:f(x)=x^{3}+y^{3}-27xy
|
extreme-6/(x-7)
|
extreme\:-\frac{6}{x-7}
|
f(x,y)=(x-y)(xy-1)
|
f(x,y)=(x-y)(xy-1)
|
extreme f(x)=9x^3-54x^2+81x+13
|
extreme\:f(x)=9x^{3}-54x^{2}+81x+13
|
f(x,y)=x^2-2x^3+2x^2+3xy
|
f(x,y)=x^{2}-2x^{3}+2x^{2}+3xy
|
extreme f(x)=ln(x^2-1)
|
extreme\:f(x)=\ln(x^{2}-1)
|
inverse of y=(5x)/(2x+3)
|
inverse\:y=\frac{5x}{2x+3}
|
extreme y^3+x^3-21/2 y^2-3x+30y
|
extreme\:y^{3}+x^{3}-\frac{21}{2}y^{2}-3x+30y
|
extreme f(x)=e^{8x}+e^{-x}
|
extreme\:f(x)=e^{8x}+e^{-x}
|
extreme f(x)=-2x^2+4x
|
extreme\:f(x)=-2x^{2}+4x
|
extreme g(x)=x^3-3x^2+1
|
extreme\:g(x)=x^{3}-3x^{2}+1
|
extreme f(x)=((x-1)^2)/x
|
extreme\:f(x)=\frac{(x-1)^{2}}{x}
|
f(x,y)=4xy+2/x+1/y
|
f(x,y)=4xy+\frac{2}{x}+\frac{1}{y}
|
extreme f(x)=x^4-8x^3+6
|
extreme\:f(x)=x^{4}-8x^{3}+6
|
extreme f(x)=(x^3)/(3-x^2)
|
extreme\:f(x)=\frac{x^{3}}{3-x^{2}}
|
extreme f(x)=-(6x)/(3x^2+8)
|
extreme\:f(x)=-\frac{6x}{3x^{2}+8}
|
f(x,y)=2x^3+y^3+3x^2-3y-12x-4
|
f(x,y)=2x^{3}+y^{3}+3x^{2}-3y-12x-4
|
extreme points of 2x^3-9x^2-24x+30
|
extreme\:points\:2x^{3}-9x^{2}-24x+30
|
Y(A,B)=AB+AB+AB
|
Y(A,B)=AB+AB+AB
|
minimum x^2-x
|
minimum\:x^{2}-x
|
extreme f(x)=x^{4/3}(7x^2+10x-210)
|
extreme\:f(x)=x^{\frac{4}{3}}(7x^{2}+10x-210)
|
extreme x^3-6xy+y^3
|
extreme\:x^{3}-6xy+y^{3}
|
extreme f(x)=(5-x)/(2x+6)
|
extreme\:f(x)=\frac{5-x}{2x+6}
|
extreme f(x)=x-\sqrt[3]{x},-1<= x<= 6
|
extreme\:f(x)=x-\sqrt[3]{x},-1\le\:x\le\:6
|
f(x,y)=5x^2-4xy+2y^2-36x
|
f(x,y)=5x^{2}-4xy+2y^{2}-36x
|
f(x,y)=37-x^2-y^2
|
f(x,y)=37-x^{2}-y^{2}
|
extreme f(x)=0.09x^2+16x+350,0<x<150
|
extreme\:f(x)=0.09x^{2}+16x+350,0<x<150
|
extreme f(x)=-x^2+5x-6,2<= x<= 3
|
extreme\:f(x)=-x^{2}+5x-6,2\le\:x\le\:3
|
inverse of f(x)=sqrt(6)
|
inverse\:f(x)=\sqrt{6}
|
extreme f(x,y)=x^3-y^2-6xy-4
|
extreme\:f(x,y)=x^{3}-y^{2}-6xy-4
|
extreme f(x)=x^2-6x+9
|
extreme\:f(x)=x^{2}-6x+9
|
extreme f(x)=(x^3+2)/x
|
extreme\:f(x)=\frac{x^{3}+2}{x}
|
extreme f(x)=3(x-4)^{2/3}+6
|
extreme\:f(x)=3(x-4)^{\frac{2}{3}}+6
|
extreme f(x)=-4cos(3x)-4,(0,2pi)
|
extreme\:f(x)=-4\cos(3x)-4,(0,2π)
|
f(t)=5-6u(t-2)+3u(t-5)
|
f(t)=5-6u(t-2)+3u(t-5)
|
h(t,v)=-16t^2+vt+k
|
h(t,v)=-16t^{2}+vt+k
|
extreme f(x,y)=4x-8xy+2y+1
|
extreme\:f(x,y)=4x-8xy+2y+1
|
extreme+5^x-4
|
extreme\:+5^{x}-4
|
intercepts of f(x)=ln(x)+2
|
intercepts\:f(x)=\ln(x)+2
|
extreme f(x)=x^3-x^2-x+6
|
extreme\:f(x)=x^{3}-x^{2}-x+6
|
extreme xsqrt(6-x)
|
extreme\:x\sqrt{6-x}
|
extreme f(x)=xe^{2/x}
|
extreme\:f(x)=xe^{\frac{2}{x}}
|
extreme f(x)=-(x^3)/3-2x^2+5x-2
|
extreme\:f(x)=-\frac{x^{3}}{3}-2x^{2}+5x-2
|
extreme f(x)=2x^3-4x^2+2x+1
|
extreme\:f(x)=2x^{3}-4x^{2}+2x+1
|
extreme 4-3x-x^3
|
extreme\:4-3x-x^{3}
|
extreme f(x)=4-x^3
|
extreme\:f(x)=4-x^{3}
|
extreme-2x^2+4x+8
|
extreme\:-2x^{2}+4x+8
|
f(xy)=x^2+2y^2-xy+14y
|
f(xy)=x^{2}+2y^{2}-xy+14y
|
extreme (x+1)/(x^2-7x-8)
|
extreme\:\frac{x+1}{x^{2}-7x-8}
|
extreme points of f(x)=x^4-2x^2-4
|
extreme\:points\:f(x)=x^{4}-2x^{2}-4
|
extreme f(x)=x^3-12x^2+45x+4
|
extreme\:f(x)=x^{3}-12x^{2}+45x+4
|
extreme f(x)=x^3-12x^2+45x+6
|
extreme\:f(x)=x^{3}-12x^{2}+45x+6
|
extreme f(x)=2-x^2
|
extreme\:f(x)=2-x^{2}
|
extreme f(x)=2x^3-2x^2-2x+5
|
extreme\:f(x)=2x^{3}-2x^{2}-2x+5
|
extreme f(x)=x+ln(x^2+1)
|
extreme\:f(x)=x+\ln(x^{2}+1)
|
f(x,y)=(sqrt(x^2+y^2-16))/(x-3)
|
f(x,y)=\frac{\sqrt{x^{2}+y^{2}-16}}{x-3}
|
extreme f(x)=x^2+xy+y^2-12x+1
|
extreme\:f(x)=x^{2}+xy+y^{2}-12x+1
|
extreme f(x)=x^2-8x+10
|
extreme\:f(x)=x^{2}-8x+10
|
critical points of f(x)=t^3-3t-10
|
critical\:points\:f(x)=t^{3}-3t-10
|
extreme f(x)=6+x-x^2
|
extreme\:f(x)=6+x-x^{2}
|
extreme f(x)=x^2+9x-5
|
extreme\:f(x)=x^{2}+9x-5
|
extreme f(x)=(ln(x))/x ,1<= x<= 3
|
extreme\:f(x)=\frac{\ln(x)}{x},1\le\:x\le\:3
|