extreme f(x)= x/(x^2+9),-4<= x<= 5
|
extreme\:f(x)=\frac{x}{x^{2}+9},-4\le\:x\le\:5
|
extreme x^3+3x^2-24x
|
extreme\:x^{3}+3x^{2}-24x
|
extreme-x^3+4xy-2y^2+1
|
extreme\:-x^{3}+4xy-2y^{2}+1
|
f(x,y)=x^2+2y^2-xy+14y
|
f(x,y)=x^{2}+2y^{2}-xy+14y
|
extreme f(x)=-x^{2/3}(x-2),-2<= x<= 2
|
extreme\:f(x)=-x^{\frac{2}{3}}(x-2),-2\le\:x\le\:2
|
extreme points of f(x)=2x^3+3x^2-12x+1
|
extreme\:points\:f(x)=2x^{3}+3x^{2}-12x+1
|
extreme f(x)=7x+7cot(x/2)
|
extreme\:f(x)=7x+7\cot(\frac{x}{2})
|
extreme f(x)=-x^3+12x,(-6,5)
|
extreme\:f(x)=-x^{3}+12x,(-6,5)
|
f(x,y)=6-x^4+2x^2-y^2
|
f(x,y)=6-x^{4}+2x^{2}-y^{2}
|
f(x,y)=8y^2+x^2-x^2y
|
f(x,y)=8y^{2}+x^{2}-x^{2}y
|
extreme f(x)=-5/(x-6)
|
extreme\:f(x)=-\frac{5}{x-6}
|
extreme f(x)=2-3x^2
|
extreme\:f(x)=2-3x^{2}
|
extreme f(x)=y^3+6x^2y-6x^2-6y^2+3
|
extreme\:f(x)=y^{3}+6x^{2}y-6x^{2}-6y^{2}+3
|
f(x,y)=-3(20x-400)^2-6/7 (2y-44)^2+8
|
f(x,y)=-3(20x-400)^{2}-\frac{6}{7}(2y-44)^{2}+8
|
inverse of f(x)=-3/4 x+15/4
|
inverse\:f(x)=-\frac{3}{4}x+\frac{15}{4}
|
intercepts of f(x)=x+5y=10
|
intercepts\:f(x)=x+5y=10
|
extreme f(x)=x-8\sqrt[3]{x}
|
extreme\:f(x)=x-8\sqrt[3]{x}
|
extreme f(x)=2x^3-15x^2+36x+10
|
extreme\:f(x)=2x^{3}-15x^{2}+36x+10
|
extreme f(x)=(2x-1)e^{-x^2}
|
extreme\:f(x)=(2x-1)e^{-x^{2}}
|
extreme f(x)=x^3-12x^2+45x+5
|
extreme\:f(x)=x^{3}-12x^{2}+45x+5
|
extreme f(x,y)=2-x^4+2x^2-y^2
|
extreme\:f(x,y)=2-x^{4}+2x^{2}-y^{2}
|
extreme f(x)=-x^{5/3}+5\sqrt[3]{x}
|
extreme\:f(x)=-x^{\frac{5}{3}}+5\sqrt[3]{x}
|
extreme f(x)=2x^3-15x^2-300x+2
|
extreme\:f(x)=2x^{3}-15x^{2}-300x+2
|
amplitude of-1/6 sin(6x)
|
amplitude\:-\frac{1}{6}\sin(6x)
|
F(t)=e^{at}
|
F(t)=e^{at}
|
f(x)=e^{-ax}
|
f(x)=e^{-ax}
|
extreme f(x)=-x^3+6x^2-9x
|
extreme\:f(x)=-x^{3}+6x^{2}-9x
|
extreme f(x)=x^2+9x+5
|
extreme\:f(x)=x^{2}+9x+5
|
extreme f(x)=x^4-8x^2+a
|
extreme\:f(x)=x^{4}-8x^{2}+a
|
extreme 7*8^{x+8}+6
|
extreme\:7\cdot\:8^{x+8}+6
|
f(x,y)=x^3+y^2-12x-2y
|
f(x,y)=x^{3}+y^{2}-12x-2y
|
extreme f(x)=sqrt(x^2+81)
|
extreme\:f(x)=\sqrt{x^{2}+81}
|
f(x,y)= 414/23 x^{2/3}y^{1/3}
|
f(x,y)=\frac{414}{23}x^{\frac{2}{3}}y^{\frac{1}{3}}
|
extreme f(x)=x^3-3x,0<= x<= 4
|
extreme\:f(x)=x^{3}-3x,0\le\:x\le\:4
|
domain of f(x)=-1/(2sqrt(5-x))
|
domain\:f(x)=-\frac{1}{2\sqrt{5-x}}
|
extreme f(x)=5x-4ln(4x)
|
extreme\:f(x)=5x-4\ln(4x)
|
extreme f(x)=x^4-3x^2=x^2(x^2-3)
|
extreme\:f(x)=x^{4}-3x^{2}=x^{2}(x^{2}-3)
|
g(x,y)=x^3+y^3-3x-3y
|
g(x,y)=x^{3}+y^{3}-3x-3y
|
extreme f(x)=-x^6-3x^3+x+1
|
extreme\:f(x)=-x^{6}-3x^{3}+x+1
|
minimum x^2=-4ay
|
minimum\:x^{2}=-4ay
|
extreme f(x)=3sin(x)cos(x)
|
extreme\:f(x)=3\sin(x)\cos(x)
|
extreme f(x)=2-|x|
|
extreme\:f(x)=2-\left|x\right|
|
extreme f(x)=4sin^2(x)
|
extreme\:f(x)=4\sin^{2}(x)
|
f(x)=4x-y
|
f(x)=4x-y
|
extreme f(x)=3sin(x)+3cos(x)
|
extreme\:f(x)=3\sin(x)+3\cos(x)
|
extreme (x^2)/(1-x^2)
|
extreme\:\frac{x^{2}}{1-x^{2}}
|
extreme f(x)=(x+2)^{4/3},-6<= x<= 6
|
extreme\:f(x)=(x+2)^{\frac{4}{3}},-6\le\:x\le\:6
|
extreme f(x)=-x^3+15x^2
|
extreme\:f(x)=-x^{3}+15x^{2}
|
extreme f(x)=(x^2-14x+49)/(x-10)
|
extreme\:f(x)=\frac{x^{2}-14x+49}{x-10}
|
extreme f(x)=e^{x^3-12x}
|
extreme\:f(x)=e^{x^{3}-12x}
|
extreme (x-8x^2)^{1/3}
|
extreme\:(x-8x^{2})^{\frac{1}{3}}
|
extreme f(x)=xsqrt(4-x^2),-2<= x<= 2
|
extreme\:f(x)=x\sqrt{4-x^{2}},-2\le\:x\le\:2
|
domain of f(x)=(x^2-9)/(x+3)
|
domain\:f(x)=\frac{x^{2}-9}{x+3}
|
extreme x^2+8x+18
|
extreme\:x^{2}+8x+18
|
extreme f(x)=xe^{-x/2}
|
extreme\:f(x)=xe^{-\frac{x}{2}}
|
minimum sqrt(1-x)+sqrt(1+x)+2sqrt(x)
|
minimum\:\sqrt{1-x}+\sqrt{1+x}+2\sqrt{x}
|
extreme f(x)=-(5e^{4x})/(x-4)
|
extreme\:f(x)=-\frac{5e^{4x}}{x-4}
|
extreme f(x)=xe^{-x/3}
|
extreme\:f(x)=xe^{-\frac{x}{3}}
|
f(x)=x^3+y^3-3x^2-3y^2-9x
|
f(x)=x^{3}+y^{3}-3x^{2}-3y^{2}-9x
|
extreme f(x)=2x^3-36x^2+210x-15
|
extreme\:f(x)=2x^{3}-36x^{2}+210x-15
|
extreme f(x)=-x^3+3x^2+9x-3
|
extreme\:f(x)=-x^{3}+3x^{2}+9x-3
|
extreme x/(x^2+16)
|
extreme\:\frac{x}{x^{2}+16}
|
inverse of 1/2 (x-2)^2-3
|
inverse\:\frac{1}{2}(x-2)^{2}-3
|
extreme f(x)=-4cos(3x)-4
|
extreme\:f(x)=-4\cos(3x)-4
|
f(x,y)=200y^2+x^2-x^2y
|
f(x,y)=200y^{2}+x^{2}-x^{2}y
|
extreme 2x^4-16x^2+3
|
extreme\:2x^{4}-16x^{2}+3
|
F(Y,Z)=Y+YZ
|
F(Y,Z)=Y+YZ
|
extreme f(x,y)=14x^2-2x^3+4xy
|
extreme\:f(x,y)=14x^{2}-2x^{3}+4xy
|
extreme f(x)= 2/3 x^3+2x^2+6x-5
|
extreme\:f(x)=\frac{2}{3}x^{3}+2x^{2}+6x-5
|
f(x,y)=x^2y-xy+3y^2
|
f(x,y)=x^{2}y-xy+3y^{2}
|
extreme y=sqrt(2x-x^2)
|
extreme\:y=\sqrt{2x-x^{2}}
|
extreme f(x)=2cos^2(x)
|
extreme\:f(x)=2\cos^{2}(x)
|
extreme 6x^{2/3}-4x
|
extreme\:6x^{\frac{2}{3}}-4x
|
domain of 3x^5+5x^3-2x
|
domain\:3x^{5}+5x^{3}-2x
|
extreme f(x)=x^2e^{-4x}
|
extreme\:f(x)=x^{2}e^{-4x}
|
extreme f(x)=4x^2+2y^2-2xy-10y-2x
|
extreme\:f(x)=4x^{2}+2y^{2}-2xy-10y-2x
|
extreme f(x)=(x^2+1)/(x^2)
|
extreme\:f(x)=\frac{x^{2}+1}{x^{2}}
|
extreme f(x)=2x^2-6x^4
|
extreme\:f(x)=2x^{2}-6x^{4}
|
extreme f(x)=-x^2+10,-3<= x<= 4
|
extreme\:f(x)=-x^{2}+10,-3\le\:x\le\:4
|
extreme f(x,y)=-x^2-y^2+x+2y-1
|
extreme\:f(x,y)=-x^{2}-y^{2}+x+2y-1
|
extreme 2/(x+5)
|
extreme\:\frac{2}{x+5}
|
extreme x^2=-4ay
|
extreme\:x^{2}=-4ay
|
extreme f(x)=-3x^3-63/2 x^2-90x+1
|
extreme\:f(x)=-3x^{3}-\frac{63}{2}x^{2}-90x+1
|
line (0,1),(4.5,2)
|
line\:(0,1),(4.5,2)
|
extreme f(x)=3+x+x^2
|
extreme\:f(x)=3+x+x^{2}
|
extreme f(x,y)=6xy-x^3-3y^2
|
extreme\:f(x,y)=6xy-x^{3}-3y^{2}
|
extreme f(x)=(x+4)/(x^2-3x-28)
|
extreme\:f(x)=\frac{x+4}{x^{2}-3x-28}
|
extreme f(x)=2+9x+3x^2-x^3
|
extreme\:f(x)=2+9x+3x^{2}-x^{3}
|
minimum f(x)= 1/(sqrt(x+1))
|
minimum\:f(x)=\frac{1}{\sqrt{x+1}}
|
extreme f(x)=cos(x)-2x
|
extreme\:f(x)=\cos(x)-2x
|
extreme f(x)=(x-5)(x-3)(x+1)^2
|
extreme\:f(x)=(x-5)(x-3)(x+1)^{2}
|
extreme f(x)=y=x^3-3x^2-9x+1
|
extreme\:f(x)=y=x^{3}-3x^{2}-9x+1
|
critical points of x^2ln(x/6)
|
critical\:points\:x^{2}\ln(\frac{x}{6})
|
extreme f(x)= 2/3 x^3+14x^2+96x+7
|
extreme\:f(x)=\frac{2}{3}x^{3}+14x^{2}+96x+7
|
f(x,y)=3x^2+y^2
|
f(x,y)=3x^{2}+y^{2}
|
extreme f(x)=-x^2-2x+1
|
extreme\:f(x)=-x^{2}-2x+1
|
minimum 3x^2+y^2-xy-11x
|
minimum\:3x^{2}+y^{2}-xy-11x
|
extreme x^2-8x
|
extreme\:x^{2}-8x
|
extreme f(x)=-x^3-6x^2-9x+3
|
extreme\:f(x)=-x^{3}-6x^{2}-9x+3
|
extreme f(x)=x^3-6x^2+3
|
extreme\:f(x)=x^{3}-6x^{2}+3
|