inverse of f(x)= 3/8 x^7
|
inverse\:f(x)=\frac{3}{8}x^{7}
|
inverse of f(3)=5x+1
|
inverse\:f(3)=5x+1
|
inverse of f(x)=(14000)/(0.3)
|
inverse\:f(x)=\frac{14000}{0.3}
|
inverse of f-1
|
inverse\:f-1
|
inverse of log_{5}(8)
|
inverse\:\log_{5}(8)
|
inverse of ((e^x+1))/((e^x-1))
|
inverse\:\frac{(e^{x}+1)}{(e^{x}-1)}
|
inverse of f(x)=e^{(sqrt(x))/(4.48)}
|
inverse\:f(x)=e^{\frac{\sqrt{x}}{4.48}}
|
slope intercept of (0)(6)
|
slope\:intercept\:(0)(6)
|
inverse of x^{0-3}+1
|
inverse\:x^{0-3}+1
|
inverse of (x+3)/(x+9)
|
inverse\:\frac{x+3}{x+9}
|
inverse of (+z)/((1/z))
|
inverse\:\frac{+z}{(\frac{1}{z})}
|
inverse of f(x)=g(x)=(x+2)^3
|
inverse\:f(x)=g(x)=(x+2)^{3}
|
inverse of (x+8)2
|
inverse\:(x+8)2
|
inverse of x^7+4
|
inverse\:x^{7}+4
|
inverse of \sqrt[5]{2x-6}
|
inverse\:\sqrt[5]{2x-6}
|
inverse of f(-10)=(x+1)/(x+9)
|
inverse\:f(-10)=\frac{x+1}{x+9}
|
inverse of f(x)=sqrt(2x-6)+13
|
inverse\:f(x)=\sqrt{2x-6}+13
|
inverse of f(x)=(3x+4)/(5x-2)
|
inverse\:f(x)=\frac{3x+4}{5x-2}
|
critical points of f(x)=4x^3-33x^2-36x+2
|
critical\:points\:f(x)=4x^{3}-33x^{2}-36x+2
|
midpoint (-4,6)(10,-10)
|
midpoint\:(-4,6)(10,-10)
|
inverse of f(x)=x^3+4x^3+1
|
inverse\:f(x)=x^{3}+4x^{3}+1
|
inverse of f(x)=n(n+1)
|
inverse\:f(x)=n(n+1)
|
inverse of f(x)=-6(x-3)^2-2
|
inverse\:f(x)=-6(x-3)^{2}-2
|
inverse of f(x)=(3x-2)/(x-5)
|
inverse\:f(x)=\frac{3x-2}{x-5}
|
inverse of f(x)=4*log_{1/2}(-x+10)
|
inverse\:f(x)=4\cdot\:\log_{\frac{1}{2}}(-x+10)
|
inverse of f(x)=sqrt((x^2-1)/(x^2-9))
|
inverse\:f(x)=\sqrt{\frac{x^{2}-1}{x^{2}-9}}
|
inverse of f(x)=Y(x)^1=(x-4)/2+3
|
inverse\:f(x)=Y(x)^{1}=\frac{x-4}{2}+3
|
inverse of (x-7)^3+8
|
inverse\:(x-7)^{3}+8
|
inverse of 1/(85-3)
|
inverse\:\frac{1}{85-3}
|
inverse of f(x)=(8/x)^3
|
inverse\:f(x)=(\frac{8}{x})^{3}
|
intercepts of f(x)=(x^2+4)/x
|
intercepts\:f(x)=\frac{x^{2}+4}{x}
|
inverse of f(x)= 1/4 sqrt(x-1)-2
|
inverse\:f(x)=\frac{1}{4}\sqrt{x-1}-2
|
inverse of f(x)=2(x-4)2-8
|
inverse\:f(x)=2(x-4)2-8
|
inverse of (-1-7x)/(5x-3)
|
inverse\:\frac{-1-7x}{5x-3}
|
inverse of f(x)=((2x-3))/(x-2)
|
inverse\:f(x)=\frac{(2x-3)}{x-2}
|
inverse of f(x)=(0,-2)
|
inverse\:f(x)=(0,-2)
|
inverse of (3x)/(4x-5)
|
inverse\:\frac{3x}{4x-5}
|
inverse of sqrt(1-x)+4
|
inverse\:\sqrt{1-x}+4
|
inverse of f(x)=2083
|
inverse\:f(x)=2083
|
inverse of [321,22,1-1]
|
inverse\:[321,22,1-1]
|
inverse of f(x)=9x^3
|
inverse\:f(x)=9x^{3}
|
extreme points of f(x)=sqrt(16-x^2)
|
extreme\:points\:f(x)=\sqrt{16-x^{2}}
|
inverse of (-3x+2)/(9+8x)
|
inverse\:\frac{-3x+2}{9+8x}
|
inverse of 100=sqrt(9)0.8x^2xh(x)
|
inverse\:100=\sqrt{9}0.8x^{2}xh(x)
|
inverse of (7x-33)/4
|
inverse\:\frac{7x-33}{4}
|
inverse of f(x)=50-2*x
|
inverse\:f(x)=50-2\cdot\:x
|
inverse of f(x)=10000(e^{0.005(t)})
|
inverse\:f(x)=10000(e^{0.005(t)})
|
inverse of f(x)=-2*3^{2x-1}+1/2
|
inverse\:f(x)=-2\cdot\:3^{2x-1}+\frac{1}{2}
|
inverse of y= 1/(1-b^x)
|
inverse\:y=\frac{1}{1-b^{x}}
|
inverse of (x^2)/(1-x^2)
|
inverse\:\frac{x^{2}}{1-x^{2}}
|
inverse of 2/(s+1)
|
inverse\:\frac{2}{s+1}
|
inverse of f(x)=3-1/(x-4)
|
inverse\:f(x)=3-\frac{1}{x-4}
|
slope intercept of 2x-2y=8
|
slope\:intercept\:2x-2y=8
|
inverse of f(x)=sqrt((x+2pi)/(8pi))-2
|
inverse\:f(x)=\sqrt{\frac{x+2π}{8π}}-2
|
inverse of 2/(s+2)
|
inverse\:\frac{2}{s+2}
|
inverse of tan(0.68)
|
inverse\:\tan(0.68)
|
inverse of arccos(-x)
|
inverse\:\arccos(-x)
|
inverse of f(x)=(((1-3x))/((2x+1)))
|
inverse\:f(x)=(\frac{(1-3x)}{(2x+1)})
|
inverse of f(x)=4+sqrt(2x-3)
|
inverse\:f(x)=4+\sqrt{2x-3}
|
inverse of y=(5x^2)/2
|
inverse\:y=\frac{5x^{2}}{2}
|
inverse of f(x)=ln(x^2-2)
|
inverse\:f(x)=\ln(x^{2}-2)
|
inverse of 3/2 x^2+9/2 x
|
inverse\:\frac{3}{2}x^{2}+\frac{9}{2}x
|
inverse of f(y)=3x^2+x
|
inverse\:f(y)=3x^{2}+x
|
inverse of (x+3)/(4x^2+3x-2)
|
inverse\:\frac{x+3}{4x^{2}+3x-2}
|
inverse of f(x)=(4/((x-4)^2))
|
inverse\:f(x)=(\frac{4}{(x-4)^{2}})
|
inverse of f(x)=ln(x+1)-4
|
inverse\:f(x)=\ln(x+1)-4
|
inverse of f(x)=(5x-11)/(10)
|
inverse\:f(x)=\frac{5x-11}{10}
|
inverse of (-2s-8)/(s^2+4s+4)
|
inverse\:\frac{-2s-8}{s^{2}+4s+4}
|
inverse of g(x)=((7x+18))/2
|
inverse\:g(x)=\frac{(7x+18)}{2}
|
inverse of cos(5/12)
|
inverse\:\cos(\frac{5}{12})
|
inverse of 2/(s+3)
|
inverse\:\frac{2}{s+3}
|
inverse of f(-4)=(x+4)/(x+7)
|
inverse\:f(-4)=\frac{x+4}{x+7}
|
inverse of (s+4)/(s+8)
|
inverse\:\frac{s+4}{s+8}
|
inverse of f(x)=9-2x^2,x<= 0
|
inverse\:f(x)=9-2x^{2},x\le\:0
|
critical points of f(x)=0.09x+17+(350)/x
|
critical\:points\:f(x)=0.09x+17+\frac{350}{x}
|
inverse of f(x)=log_{2}(4x+7)
|
inverse\:f(x)=\log_{2}(4x+7)
|
inverse of f(x)=(-2x+5)/(-3x+9)
|
inverse\:f(x)=\frac{-2x+5}{-3x+9}
|
inverse of y=(2x+2)/(5x-3)
|
inverse\:y=\frac{2x+2}{5x-3}
|
inverse of f(x)=arctan(x),0<x<= 1
|
inverse\:f(x)=\arctan(x),0<x\le\:1
|
inverse of f(x)= 1/1 x-3/4
|
inverse\:f(x)=\frac{1}{1}x-\frac{3}{4}
|
inverse of 3/x+2
|
inverse\:\frac{3}{x}+2
|
inverse of 25\mod 111
|
inverse\:25\mod\:111
|
inverse of f(x)=((3x+7))/(5x)
|
inverse\:f(x)=\frac{(3x+7)}{5x}
|
inverse of 1/((1-0.4z^{-1))^2}
|
inverse\:\frac{1}{(1-0.4z^{-1})^{2}}
|
inverse of f(x)=g(x)=(7/3)x+2
|
inverse\:f(x)=g(x)=(\frac{7}{3})x+2
|
domain of ((7+1/x))/((1/x))
|
domain\:\frac{(7+\frac{1}{x})}{(\frac{1}{x})}
|
inverse of sqrt(3x-3)
|
inverse\:\sqrt{3x-3}
|
inverse of [-7.5]
|
inverse\:[-7.5]
|
inverse of 10-4x^3
|
inverse\:10-4x^{3}
|
inverse of f(x)=5x^{15}-3
|
inverse\:f(x)=5x^{15}-3
|
inverse of f(x)=x^2-10+15
|
inverse\:f(x)=x^{2}-10+15
|
inverse of f(x)= 1/2 log_{e}(1+x)
|
inverse\:f(x)=\frac{1}{2}\log_{e}(1+x)
|
inverse of f(x)=+12
|
inverse\:f(x)=+12
|
inverse of y=(3x-4)/5
|
inverse\:y=\frac{3x-4}{5}
|
inverse of d/d (x^2+2x+4)
|
inverse\:\frac{d}{d}(x^{2}+2x+4)
|
inverse of Y^2
|
inverse\:Y^{2}
|
distance (-5,-5)(-9,-2)
|
distance\:(-5,-5)(-9,-2)
|
inverse of h(x)=sqrt(x+7)-1
|
inverse\:h(x)=\sqrt{x+7}-1
|
inverse of y=((2x+1))/(3-2x)
|
inverse\:y=\frac{(2x+1)}{3-2x}
|
inverse of f(x)=log_{e}(3x)
|
inverse\:f(x)=\log_{e}(3x)
|