inverse of 123056709
|
inverse\:123056709
|
inverse of f(x)=((x-4))/((x+2))
|
inverse\:f(x)=\frac{(x-4)}{(x+2)}
|
inverse of f(x)=y=(x+65/21)/(5/21)
|
inverse\:f(x)=y=\frac{x+\frac{65}{21}}{\frac{5}{21}}
|
inverse of f(x)=x=15
|
inverse\:f(x)=x=15
|
inverse of (x-3)3+2
|
inverse\:(x-3)3+2
|
inverse of ((x+2))/(x+9)
|
inverse\:\frac{(x+2)}{x+9}
|
critical points of f(x)=(x-5)^{4/5}
|
critical\:points\:f(x)=(x-5)^{\frac{4}{5}}
|
inverse of y=-3(x-1)^2+2
|
inverse\:y=-3(x-1)^{2}+2
|
inverse of f(x)=2a^x
|
inverse\:f(x)=2a^{x}
|
inverse of 3-12x+2
|
inverse\:3-12x+2
|
inverse of f(x)=3^{(x+3)-6}
|
inverse\:f(x)=3^{(x+3)-6}
|
inverse of (1-41x)/x
|
inverse\:\frac{1-41x}{x}
|
inverse of f(x)=((3x+1)^2)/2-4
|
inverse\:f(x)=\frac{(3x+1)^{2}}{2}-4
|
inverse of y=7x^2-55
|
inverse\:y=7x^{2}-55
|
inverse of y=((x^2))/8 ,(x>0)
|
inverse\:y=\frac{(x^{2})}{8},(x>0)
|
inverse of f(x)=((2x-3)+3)/2
|
inverse\:f(x)=\frac{(2x-3)+3}{2}
|
inverse of 375+0.1q
|
inverse\:375+0.1q
|
domain of f(x)=sqrt(5-x)+sqrt(6+x)
|
domain\:f(x)=\sqrt{5-x}+\sqrt{6+x}
|
inverse of 1/(s+1)-1/(s+2)
|
inverse\:\frac{1}{s+1}-\frac{1}{s+2}
|
inverse of f(x)=(3(x+3))/2+4
|
inverse\:f(x)=\frac{3(x+3)}{2}+4
|
inverse of y=(4x)/(x+1)
|
inverse\:y=\frac{4x}{x+1}
|
inverse of m+1/x
|
inverse\:m+\frac{1}{x}
|
inverse of 1/x-4
|
inverse\:\frac{1}{x}-4
|
inverse of (2x+8)/(x+3)
|
inverse\:\frac{2x+8}{x+3}
|
inverse of-5sqrt(x-3)+4
|
inverse\:-5\sqrt{x-3}+4
|
inverse of f(x)=3x^6-24
|
inverse\:f(x)=3x^{6}-24
|
inverse of 3/(s^2+9)
|
inverse\:\frac{3}{s^{2}+9}
|
inverse of A(r)=spir^2+8pir
|
inverse\:A(r)=sπr^{2}+8πr
|
range of 1/(x+3)
|
range\:\frac{1}{x+3}
|
shift f(x)=4sin(2x-(pi)/3)+1
|
shift\:f(x)=4\sin(2x-\frac{\pi}{3})+1
|
inverse of 1/x+7
|
inverse\:\frac{1}{x}+7
|
inverse of f(x)= 39/10 t^2
|
inverse\:f(x)=\frac{39}{10}t^{2}
|
inverse of y=-9x-6
|
inverse\:y=-9x-6
|
inverse of (x-1)/(x^2+3x+2)
|
inverse\:\frac{x-1}{x^{2}+3x+2}
|
inverse of f(x)=(e^x)/(1+7e^x)
|
inverse\:f(x)=\frac{e^{x}}{1+7e^{x}}
|
inverse of f(x)=3(x-1)^2-5
|
inverse\:f(x)=3(x-1)^{2}-5
|
inverse of f(x)=x^2-4x+17
|
inverse\:f(x)=x^{2}-4x+17
|
inverse of f(x)=0.25x
|
inverse\:f(x)=0.25x
|
inverse of f(x)=(2x-3)/(x+3)
|
inverse\:f(x)=\frac{2x-3}{x+3}
|
inverse of sqrt(9y-8)
|
inverse\:\sqrt{9y-8}
|
range of (3x)/(x+2)
|
range\:\frac{3x}{x+2}
|
inverse of f(x)=18ln(tan(x))
|
inverse\:f(x)=18\ln(\tan(x))
|
inverse of f(x)=(x+1)/(3x+4)
|
inverse\:f(x)=\frac{x+1}{3x+4}
|
inverse of tan(0.73)
|
inverse\:\tan(0.73)
|
inverse of f(x)=(10+4x)/(5x+6)
|
inverse\:f(x)=\frac{10+4x}{5x+6}
|
inverse of f(x)=((x+1))/(sqrt(x))
|
inverse\:f(x)=\frac{(x+1)}{\sqrt{x}}
|
inverse of 1-e^{-x/2}
|
inverse\:1-e^{-\frac{x}{2}}
|
inverse of f(x)=(2x-3)/(4x+6)
|
inverse\:f(x)=\frac{2x-3}{4x+6}
|
inverse of f(x)=\sqrt[3]{x-10}+8
|
inverse\:f(x)=\sqrt[3]{x-10}+8
|
inverse of f(x)=\sqrt[3]{x-10}+4
|
inverse\:f(x)=\sqrt[3]{x-10}+4
|
inverse of ln(x)4.77
|
inverse\:\ln(x)4.77
|
domain of f(x)=x^2-11,x>= 0
|
domain\:f(x)=x^{2}-11,x\ge\:0
|
inverse of (4x)/(3x-5)
|
inverse\:\frac{4x}{3x-5}
|
inverse of 8/(x+5)
|
inverse\:\frac{8}{x+5}
|
inverse of f(x)=(2x+3)/(4x-1)
|
inverse\:f(x)=\frac{2x+3}{4x-1}
|
inverse of h(x)=x
|
inverse\:h(x)=x
|
inverse of f(x)=5x^2-6
|
inverse\:f(x)=5x^{2}-6
|
inverse of 8/(x+7)
|
inverse\:\frac{8}{x+7}
|
inverse of h(x)=-3(x+4)^2-1
|
inverse\:h(x)=-3(x+4)^{2}-1
|
inverse of (-3+sqrt(4x-3))/2
|
inverse\:\frac{-3+\sqrt{4x-3}}{2}
|
inverse of (6x-6)/(6x+1)
|
inverse\:\frac{6x-6}{6x+1}
|
inverse of f(x)=(9x)/(x-2)
|
inverse\:f(x)=\frac{9x}{x-2}
|
asymptotes of f(x)=(10)/(x^2-1)
|
asymptotes\:f(x)=\frac{10}{x^{2}-1}
|
inverse of f(x)=(32)^5
|
inverse\:f(x)=(32)^{5}
|
inverse of f(x)=x^4+4,x<= 0
|
inverse\:f(x)=x^{4}+4,x\le\:0
|
inverse of f(x)=x^2-18x+81
|
inverse\:f(x)=x^{2}-18x+81
|
inverse of f(x)=9*2^{2x-1}-1
|
inverse\:f(x)=9\cdot\:2^{2x-1}-1
|
inverse of f(x)=5-1/2 x
|
inverse\:f(x)=5-\frac{1}{2}x
|
inverse of f(x)=y=(5x-3)/x
|
inverse\:f(x)=y=\frac{5x-3}{x}
|
inverse of f(x)=x^2+4x+5,x<=-2
|
inverse\:f(x)=x^{2}+4x+5,x\le\:-2
|
inverse of sqrt(-5x-6)
|
inverse\:\sqrt{-5x-6}
|
inverse of f(x)=((2x+5))/(x-11)
|
inverse\:f(x)=\frac{(2x+5)}{x-11}
|
inverse of f(x)=y=2x-8
|
inverse\:f(x)=y=2x-8
|
domain of f(x)=sqrt((-2x+1)/(x^2+x-6))
|
domain\:f(x)=\sqrt{\frac{-2x+1}{x^{2}+x-6}}
|
inverse of f(x)=y=2x-4
|
inverse\:f(x)=y=2x-4
|
inverse of tan(-2/2)
|
inverse\:\tan(-\frac{2}{2})
|
inverse of g(x)=(x+1)/(x-1)
|
inverse\:g(x)=\frac{x+1}{x-1}
|
inverse of f(x)= 1/2 x^2-8
|
inverse\:f(x)=\frac{1}{2}x^{2}-8
|
inverse of f(x)=-x^2+1,x>= 0
|
inverse\:f(x)=-x^{2}+1,x\ge\:0
|
inverse of f(x)=-2(x+1)^3
|
inverse\:f(x)=-2(x+1)^{3}
|
inverse of (x^2-4)/(x-2)
|
inverse\:\frac{x^{2}-4}{x-2}
|
inverse of y=2^{x-1}+5
|
inverse\:y=2^{x-1}+5
|
inverse of f(x)=(5x+4-4)/5
|
inverse\:f(x)=\frac{5x+4-4}{5}
|
domain of f(x)=(5x)/(x-9)
|
domain\:f(x)=\frac{5x}{x-9}
|
inverse of 8/(x+3)
|
inverse\:\frac{8}{x+3}
|
inverse of h(x)=(3-x)/(x+1)
|
inverse\:h(x)=\frac{3-x}{x+1}
|
inverse of e^{x-3}+2
|
inverse\:e^{x-3}+2
|
inverse of f(x)=5x-40
|
inverse\:f(x)=5x-40
|
inverse of f(x)=7^{(-x+3)}+5
|
inverse\:f(x)=7^{(-x+3)}+5
|
inverse of 64+81a^2
|
inverse\:64+81a^{2}
|
inverse of (3x-17)^2
|
inverse\:(3x-17)^{2}
|
inverse of f(x)=f(x)= 9/5 c+32
|
inverse\:f(x)=f(x)=\frac{9}{5}c+32
|
inverse of f(x)=(3x-8)/(2x+1)
|
inverse\:f(x)=\frac{3x-8}{2x+1}
|
inverse of 3x-3x^2
|
inverse\:3x-3x^{2}
|
midpoint (-5,-7)(2,-4)
|
midpoint\:(-5,-7)(2,-4)
|
inverse of f(x)=-x/(2x+2)
|
inverse\:f(x)=-\frac{x}{2x+2}
|
inverse of f(x)=-3x-18
|
inverse\:f(x)=-3x-18
|
inverse of f(x)=1-e^{(-0.03*x^{1.2})}
|
inverse\:f(x)=1-e^{(-0.03\cdot\:x^{1.2})}
|
inverse of ln(5x+7)
|
inverse\:\ln(5x+7)
|
inverse of f(x)=3ln(3^x)+1
|
inverse\:f(x)=3\ln(3^{x})+1
|