Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
monotone-3x^3+7x^2+x-3
monotone\:-3x^{3}+7x^{2}+x-3
domain of (x+4)/(x-4)
domain\:\frac{x+4}{x-4}
asymptotes of f(x)=(3x)/(x^2+1)
asymptotes\:f(x)=\frac{3x}{x^{2}+1}
domain of 1/(4x+8)
domain\:\frac{1}{4x+8}
range of log_{2}(x+1)
range\:\log_{2}(x+1)
slope ofintercept 9x-2y=7
slopeintercept\:9x-2y=7
domain of 5/(x+3)
domain\:\frac{5}{x+3}
inverse of f(x)= 5/(x-7)
inverse\:f(x)=\frac{5}{x-7}
slope of f(x)= 7/2 x-8
slope\:f(x)=\frac{7}{2}x-8
domain of f(x)=sqrt(2+3x)
domain\:f(x)=\sqrt{2+3x}
parity 5x^4-2sec^2(x)
parity\:5x^{4}-2\sec^{2}(x)
inverse of y=2^x
inverse\:y=2^{x}
range of 1/(x+1)+2
range\:\frac{1}{x+1}+2
inverse of f(x)=15-x^2
inverse\:f(x)=15-x^{2}
domain of f(x)=sqrt(36-x^2)+sqrt(x+3)
domain\:f(x)=\sqrt{36-x^{2}}+\sqrt{x+3}
domain of f(x)= 4/x
domain\:f(x)=\frac{4}{x}
inverse of y=sqrt(x-1)+2
inverse\:y=\sqrt{x-1}+2
slope ofintercept 3x+y=7
slopeintercept\:3x+y=7
inverse of f(x)=(11)/x
inverse\:f(x)=\frac{11}{x}
range of 5x^2+10x
range\:5x^{2}+10x
intercepts of y=3x-6
intercepts\:y=3x-6
domain of f(x)= 1/4 x+3
domain\:f(x)=\frac{1}{4}x+3
distance (3,3),(7,3)
distance\:(3,3),(7,3)
critical f(x)=sin^2(x)+cos(x)
critical\:f(x)=\sin^{2}(x)+\cos(x)
intercepts of-x^3+12x-16
intercepts\:-x^{3}+12x-16
domain of (x-2)^2,x>= 2
domain\:(x-2)^{2},x\ge\:2
extreme f(x)=(x^3)/(x^2+1)
extreme\:f(x)=\frac{x^{3}}{x^{2}+1}
domain of f(x)=x^9
domain\:f(x)=x^{9}
midpoint (-1,2),(7,-6)
midpoint\:(-1,2),(7,-6)
asymptotes of f(x)=-x^3+27x-54
asymptotes\:f(x)=-x^{3}+27x-54
inverse of f(x)=(4x+8)/(3x+4)
inverse\:f(x)=\frac{4x+8}{3x+4}
inverse of f(x)=sqrt(5-x)+10
inverse\:f(x)=\sqrt{5-x}+10
domain of f(x)=arcsin(x)-arccos(x)
domain\:f(x)=\arcsin(x)-\arccos(x)
domain of f(x)=(sqrt(1-x))/(x-1)
domain\:f(x)=\frac{\sqrt{1-x}}{x-1}
y=-2x+4
y=-2x+4
parity f(x)=7x^2
parity\:f(x)=7x^{2}
range of y= x/(x^2+4)
range\:y=\frac{x}{x^{2}+4}
domain of f(x)=(sqrt(8+x))/(5-x)
domain\:f(x)=\frac{\sqrt{8+x}}{5-x}
slope ofintercept 8x+7y=-6
slopeintercept\:8x+7y=-6
inflection f(x)= 7/((x-4))
inflection\:f(x)=\frac{7}{(x-4)}
domain of y=sqrt(x^2-5x+6)
domain\:y=\sqrt{x^{2}-5x+6}
domain of f(x)=ln(10x)
domain\:f(x)=\ln(10x)
range of ln(x-2)
range\:\ln(x-2)
inverse of f(x)=2x^2-6
inverse\:f(x)=2x^{2}-6
inflection x^4+4x
inflection\:x^{4}+4x
asymptotes of f(x)=(4/3)^{-x}
asymptotes\:f(x)=(\frac{4}{3})^{-x}
domain of f(x)=(-3)/x
domain\:f(x)=\frac{-3}{x}
parallel 2x-y=-4,(0,0)
parallel\:2x-y=-4,(0,0)
periodicity of-6cos(8x-pi/2)
periodicity\:-6\cos(8x-\frac{π}{2})
critical (x^2-4)/(x^2-1)
critical\:\frac{x^{2}-4}{x^{2}-1}
domain of f(x)=sqrt(-4x-5)
domain\:f(x)=\sqrt{-4x-5}
inflection f(x)=-6/((x-1)^3)
inflection\:f(x)=-\frac{6}{(x-1)^{3}}
parity f(x)=-3x+1
parity\:f(x)=-3x+1
slope ofintercept y+6=2(x-2)
slopeintercept\:y+6=2(x-2)
range of f(x)=sqrt(4x-x^2)
range\:f(x)=\sqrt{4x-x^{2}}
range of f(x)=sqrt(2x+4)
range\:f(x)=\sqrt{2x+4}
range of (3x-5)/(x+4)
range\:\frac{3x-5}{x+4}
intercepts of log_{3}(x-2)+1
intercepts\:\log_{3}(x-2)+1
domain of f(x)= 1/(x^2-4)
domain\:f(x)=\frac{1}{x^{2}-4}
inverse of sqrt(x^2+7x),x>0
inverse\:\sqrt{x^{2}+7x},x>0
parity f(x)= x/(x^2-1)
parity\:f(x)=\frac{x}{x^{2}-1}
f(x)=x^2-5
f(x)=x^{2}-5
asymptotes of f(y)=(x^2+4)/(x^2-1)
asymptotes\:f(y)=\frac{x^{2}+4}{x^{2}-1}
extreme f(x)=x^3-6x^2+7
extreme\:f(x)=x^{3}-6x^{2}+7
perpendicular y=-3x+1,(3,5)
perpendicular\:y=-3x+1,(3,5)
simplify (30.8)(40.7)
simplify\:(30.8)(40.7)
shift 4cos(2(x+pi/4))-3
shift\:4\cos(2(x+\frac{π}{4}))-3
line 2x+2
line\:2x+2
range of f(x)=e^{3x-2}
range\:f(x)=e^{3x-2}
amplitude of sin(x+(3pi)/2)
amplitude\:\sin(x+\frac{3π}{2})
asymptotes of (x^3-8)/(x^2-5x+6)
asymptotes\:\frac{x^{3}-8}{x^{2}-5x+6}
midpoint (-5,-1),(-1,0)
midpoint\:(-5,-1),(-1,0)
domain of sqrt(x^2+x+1)
domain\:\sqrt{x^{2}+x+1}
critical f(x)=1+8x-x^3
critical\:f(x)=1+8x-x^{3}
domain of f(x)=sqrt(t)
domain\:f(x)=\sqrt{t}
inverse of f(x)=sqrt(3x+6)
inverse\:f(x)=\sqrt{3x+6}
line x=30-2/11 y
line\:x=30-\frac{2}{11}y
asymptotes of (1/2)^x
asymptotes\:(\frac{1}{2})^{x}
inverse of f(x)=(9-4x)/(x+7)
inverse\:f(x)=\frac{9-4x}{x+7}
domain of f(x)=sqrt(2x^2-13x-24)
domain\:f(x)=\sqrt{2x^{2}-13x-24}
domain of f(x)=6^x
domain\:f(x)=6^{x}
inverse of f(x)=-x^3-4
inverse\:f(x)=-x^{3}-4
domain of f(x)=x^4-4x^3
domain\:f(x)=x^{4}-4x^{3}
asymptotes of f(x)=(t^2-2t)/(t^4-16)
asymptotes\:f(x)=\frac{t^{2}-2t}{t^{4}-16}
slope of y= 7/6 x
slope\:y=\frac{7}{6}x
range of f(x)=sqrt(9-x^2)
range\:f(x)=\sqrt{9-x^{2}}
inverse of f(x)=\sqrt[3]{x}-2
inverse\:f(x)=\sqrt[3]{x}-2
critical f(x)=5x^2-x^3+2
critical\:f(x)=5x^{2}-x^{3}+2
critical 1/((x^2+1)^{3/2)}
critical\:\frac{1}{(x^{2}+1)^{\frac{3}{2}}}
critical 3/(1+9x^2)
critical\:\frac{3}{1+9x^{2}}
inverse of f(x)=\sqrt[3]{(-x+2)/2}
inverse\:f(x)=\sqrt[3]{\frac{-x+2}{2}}
domain of f(x)=(3x+|x|)/x
domain\:f(x)=\frac{3x+\left|x\right|}{x}
perpendicular y= x/2-9,(8,-7)
perpendicular\:y=\frac{x}{2}-9,(8,-7)
inverse of (x-6)/(x+2)
inverse\:\frac{x-6}{x+2}
asymptotes of f(x)=(sqrt(5x^2+6))/(7x+5)
asymptotes\:f(x)=\frac{\sqrt{5x^{2}+6}}{7x+5}
domain of 1/(x^2-5x+6)
domain\:\frac{1}{x^{2}-5x+6}
domain of f(x)=(2x+1)/(x^2-4x+3)
domain\:f(x)=\frac{2x+1}{x^{2}-4x+3}
domain of ((x-1)^2)/((x-1)^2+1)
domain\:\frac{(x-1)^{2}}{(x-1)^{2}+1}
domain of-sqrt(x)+2
domain\:-\sqrt{x}+2
asymptotes of f(x)=(2e^x)/(-3+5e^{-x)}
asymptotes\:f(x)=\frac{2e^{x}}{-3+5e^{-x}}
1
..
188
189
190
191
192
..
1324