Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
f(x)=sin(xcos(x))
f(x)=\sin(x\cos(x))
t(dy)/(dt)+2y=sin(t)
t\frac{dy}{dt}+2y=\sin(t)
integral from 0 to 3 of (e^x)
\int\:_{0}^{3}(e^{x})dx
integral of (4x^3+5x)e^{x^2}
\int\:(4x^{3}+5x)e^{x^{2}}dx
integral of (x^2)/(x^{3+1)}
\int\:\frac{x^{2}}{x^{3+1}}dx
integral of 1/3 e^t
\int\:\frac{1}{3}e^{t}dt
x^2+x(dy)/(dx)=y
x^{2}+x\frac{dy}{dx}=y
(\partial)/(\partial y)(-3y)
\frac{\partial\:}{\partial\:y}(-3y)
y^'+t/(t^2-16)y=(e^t)/(t-9)
y^{\prime\:}+\frac{t}{t^{2}-16}y=\frac{e^{t}}{t-9}
sum from n=0 to infinity of cos(npi)
\sum\:_{n=0}^{\infty\:}\cos(nπ)
integral from 0 to infinity of 8/(x^2+4)
\int\:_{0}^{\infty\:}\frac{8}{x^{2}+4}dx
derivative of x*sqrt(x^2+1)
\frac{d}{dx}(x\cdot\:\sqrt{x^{2}+1})
tangent of y=xsqrt(x),(1,1)
tangent\:y=x\sqrt{x},(1,1)
derivative of x/(sin(x))
\frac{d}{dx}(\frac{x}{\sin(x)})
(\partial)/(\partial x)(x^{1/4})
\frac{\partial\:}{\partial\:x}(x^{\frac{1}{4}})
limit as x approaches 1 of 2x+3
\lim\:_{x\to\:1}(2x+3)
derivative of (5x^3/4-2/(5x^3))
\frac{d}{dx}(\frac{5x^{3}}{4}-\frac{2}{5x^{3}})
integral of (ln(x^2))
\int\:(\ln(x^{2}))dx
integral of (((x^m-x^n)^2)/(sqrt(x)))
\int\:(\frac{(x^{m}-x^{n})^{2}}{\sqrt{x}})dx
(\partial)/(\partial y)(4x^2+2xy+y^2-8)
\frac{\partial\:}{\partial\:y}(4x^{2}+2xy+y^{2}-8)
derivative of x^5e^{xy}+3x
\frac{d}{dx}(x^{5}e^{xy}+3x)
f(x)=tan(5x)
f(x)=\tan(5x)
derivative of ln(sqrt(((x-3))/(x-1)))
derivative\:\ln(\sqrt{\frac{(x-3)}{x-1}})
integral of t^3cos(t^2)
\int\:t^{3}\cos(t^{2})dt
limit as x approaches 5+of (5-x)/(|5-x|)
\lim\:_{x\to\:5+}(\frac{5-x}{\left|5-x\right|})
derivative of ln(4x+7)
derivative\:\ln(4x+7)
integral of ((3+e^x)^2)/(e^x)
\int\:\frac{(3+e^{x})^{2}}{e^{x}}dx
(\partial)/(\partial x)(-ysin(x))
\frac{\partial\:}{\partial\:x}(-y\sin(x))
derivative of (sin(2x)/(tan(x)))
\frac{d}{dx}(\frac{\sin(2x)}{\tan(x)})
taylor 1/((x+2))
taylor\:\frac{1}{(x+2)}
integral of 1/(\sqrt[4]{x+2)}
\int\:\frac{1}{\sqrt[4]{x+2}}dx
integral of 3/(x^2(x^2+25))
\int\:\frac{3}{x^{2}(x^{2}+25)}dx
integral of 1/(36+x^2)
\int\:\frac{1}{36+x^{2}}dx
(\partial)/(\partial x)(-2e^{4y-x^2-y^2}x)
\frac{\partial\:}{\partial\:x}(-2e^{4y-x^{2}-y^{2}}x)
limit as x approaches infinity of x-6
\lim\:_{x\to\:\infty\:}(x-6)
area (8cos(pix)),(8x^2-2),[-0.5,0.5]
area\:(8\cos(πx)),(8x^{2}-2),[-0.5,0.5]
(\partial)/(\partial y)((x-4)ln(xy))
\frac{\partial\:}{\partial\:y}((x-4)\ln(xy))
integral from 0 to ln(4) of (e^x)/(sqrt(e^{2x)+25)}
\int\:_{0}^{\ln(4)}\frac{e^{x}}{\sqrt{e^{2x}+25}}dx
limit as x approaches-infinity of 1/x+3
\lim\:_{x\to\:-\infty\:}(\frac{1}{x}+3)
derivative of 4xe^{3x}
\frac{d}{dx}(4xe^{3x})
derivative of x/(sin(x+cos(x)))
\frac{d}{dx}(\frac{x}{\sin(x)+\cos(x)})
derivative of e^{5x}cos(3x)
\frac{d}{dx}(e^{5x}\cos(3x))
derivative of (x^4/(3-x^3))
\frac{d}{dx}(\frac{x^{4}}{3-x^{3}})
derivative of-4e^{-4x}
\frac{d}{dx}(-4e^{-4x})
derivative of sqrt(7x-8)
\frac{d}{dx}(\sqrt{7x-8})
sum from n=0 to infinity of (400)(0.1)^n
\sum\:_{n=0}^{\infty\:}(400)(0.1)^{n}
(dy)/(dx)=(x^2+2)/(3y^2)
\frac{dy}{dx}=\frac{x^{2}+2}{3y^{2}}
(x^2+x)^'
(x^{2}+x)^{\prime\:}
derivative of ((x^2)/(sin(x)))
\frac{d}{dx}(\frac{(x^{2})}{\sin(x)})
y^'-e^{6x+y}=0
y^{\prime\:}-e^{6x+y}=0
integral of x(x+1)^4
\int\:x(x+1)^{4}dx
(arcsin(2x))^'
(\arcsin(2x))^{\prime\:}
y^{''}-9y=e^{3x}
y^{\prime\:\prime\:}-9y=e^{3x}
derivative of {y}(θ,xtan(θ))
\frac{d}{dx}({y}(θ,x)\tan(θ))
y(dy)/(dx)-y^3=y^2ln(x)
y\frac{dy}{dx}-y^{3}=y^{2}\ln(x)
derivative of (x-2^2+2)
\frac{d}{dx}((x-2)^{2}+2)
y^'+5y=e^{-3t}
y^{\prime\:}+5y=e^{-3t}
inverse oflaplace (s+2)/((s-1)(s+3)^2)
inverselaplace\:\frac{s+2}{(s-1)(s+3)^{2}}
integral of (sqrt(x+1))/(x+10)
\int\:\frac{\sqrt{x+1}}{x+10}dx
area f(x)=x^2,(0,3)
area\:f(x)=x^{2},(0,3)
integral of 1/(e^xsqrt(e^{2x)-9)}
\int\:\frac{1}{e^{x}\sqrt{e^{2x}-9}}dx
integral of x^{15}
\int\:x^{15}dx
derivative of (7x^2-12xe^x)
\frac{d}{dx}((7x^{2}-12x)e^{x})
(\partial)/(\partial y)(4x^3-5x^2+8x)
\frac{\partial\:}{\partial\:y}(4x^{3}-5x^{2}+8x)
(e^{-x}sin(x))^'
(e^{-x}\sin(x))^{\prime\:}
integral of 4xcos(x)
\int\:4x\cos(x)dx
integral from-2 to 3 of 3/(x^4)
\int\:_{-2}^{3}\frac{3}{x^{4}}dx
(\partial)/(\partial x)(v)
\frac{\partial\:}{\partial\:x}(v)
sum from n=0 to infinity of (-1)^nx^{3n}
\sum\:_{n=0}^{\infty\:}(-1)^{n}x^{3n}
limit as (x,y) approaches (1,1) of x+y
\lim\:_{(x,y)\to\:(1,1)}(x+y)
derivative of (x^2^{2x})
\frac{d}{dx}((x^{2})^{2x})
inverse oflaplace (8s^2-4s+12)/(s(s^2+4))
inverselaplace\:\frac{8s^{2}-4s+12}{s(s^{2}+4)}
tangent of f(x)=sqrt(x),\at x= 49/121
tangent\:f(x)=\sqrt{x},\at\:x=\frac{49}{121}
(d^4)/(dx^4)(2e^{x^2})
\frac{d^{4}}{dx^{4}}(2e^{x^{2}})
(\partial)/(\partial y)(y+xy)
\frac{\partial\:}{\partial\:y}(y+xy)
limit as x approaches-4 of (x^2+3x-4)/(x+4)
\lim\:_{x\to\:-4}(\frac{x^{2}+3x-4}{x+4})
tangent of-x^2+1
tangent\:-x^{2}+1
derivative of e^{x^4+7x}
\frac{d}{dx}(e^{x^{4}+7x})
(\partial)/(\partial x)(7+xln(xy-9))
\frac{\partial\:}{\partial\:x}(7+x\ln(xy-9))
derivative of (x^3+5x^2-x^{-2}+8^{-7/6})
\frac{d}{dx}((x^{3}+5x^{2}-x^{-2}+8)^{-\frac{7}{6}})
limit as q approaches 0+of sqrt(4q)
\lim\:_{q\to\:0+}(\sqrt{4q})
integral of 22x^{21}
\int\:22x^{21}dx
limit as x approaches 8 of x^{8/3}
\lim\:_{x\to\:8}(x^{\frac{8}{3}})
(2x-x^{-2}y)dx+x^{-1}dy=0
(2x-x^{-2}y)dx+x^{-1}dy=0
integral of (2x^3+x^2+4)/((x^2+4)^2)
\int\:\frac{2x^{3}+x^{2}+4}{(x^{2}+4)^{2}}dx
(\partial)/(\partial x)(xe^y-ln(x))
\frac{\partial\:}{\partial\:x}(xe^{y}-\ln(x))
derivative of (4x^2-3/(x-1))
\frac{d}{dx}(\frac{4x^{2}-3}{x-1})
d/(dt)((sin(t)+cos(t))^2)
\frac{d}{dt}((\sin(t)+\cos(t))^{2})
slope of y=5x^2+6/x
slope\:y=5x^{2}+\frac{6}{x}
derivative of y=(8t)/(8+sqrt(t))
derivative\:y=\frac{8t}{8+\sqrt{t}}
limit as x approaches 2 of 2xe^{x^2}
\lim\:_{x\to\:2}(2xe^{x^{2}})
integral of 2x^3(1-x^4)^{-1/4}
\int\:2x^{3}(1-x^{4})^{-\frac{1}{4}}dx
integral of x/(sqrt(9-4x^2))
\int\:\frac{x}{\sqrt{9-4x^{2}}}dx
integral of ((1+6ln(x))^2)/x
\int\:\frac{(1+6\ln(x))^{2}}{x}dx
(dy)/(dx)=(x^2y^2)/(1+x)
\frac{dy}{dx}=\frac{x^{2}y^{2}}{1+x}
integral from 0 to 5 of 2x^2e^{-x}
\int\:_{0}^{5}2x^{2}e^{-x}dx
derivative of 3t(2t^2-5)^4
derivative\:3t(2t^{2}-5)^{4}
inverse oflaplace ((s-2))/((s-2)^2+1)
inverselaplace\:\frac{(s-2)}{(s-2)^{2}+1}
(\partial)/(\partial x)(e^{2x+y})
\frac{\partial\:}{\partial\:x}(e^{2x+y})
tangent of f(x)=7x-6sqrt(x),\at x=1
tangent\:f(x)=7x-6\sqrt{x},\at\:x=1
1
..
288
289
290
291
292
..
1823