f(n)=\sqrt[n]{(-1)^n}
|
f(n)=\sqrt[n]{(-1)^{n}}
|
f(x)=(x-6)(x+2)
|
f(x)=(x-6)(x+2)
|
f(x)=(x^2)/(x^2-36)
|
f(x)=\frac{x^{2}}{x^{2}-36}
|
f(y)=3-y^2
|
f(y)=3-y^{2}
|
f(x)=x^3*cos(x)
|
f(x)=x^{3}\cdot\:\cos(x)
|
y=(2x+5)^3
|
y=(2x+5)^{3}
|
g(x)=x^2+x-1
|
g(x)=x^{2}+x-1
|
f(2)=2x-3
|
f(2)=2x-3
|
shift 5cos(2x+(pi)/2)
|
shift\:5\cos(2x+\frac{\pi}{2})
|
f(n)=n^{log_{2}(n)}
|
f(n)=n^{\log_{2}(n)}
|
f(x)=(x^2-x)/(x^2+2x-3)
|
f(x)=\frac{x^{2}-x}{x^{2}+2x-3}
|
f(x)=e^{xsqrt(x^2+1)}
|
f(x)=e^{x\sqrt{x^{2}+1}}
|
f(a)=0.006a^2-0.02a+120
|
f(a)=0.006a^{2}-0.02a+120
|
f(t)=-4.9t^2+4t+10
|
f(t)=-4.9t^{2}+4t+10
|
f(x)=sqrt(6x-12)
|
f(x)=\sqrt{6x-12}
|
y=x^3+4x^2+x-6
|
y=x^{3}+4x^{2}+x-6
|
f(x)=(x+4)/(sqrt(x))
|
f(x)=\frac{x+4}{\sqrt{x}}
|
f(x)=(x+4)/(x^2+9)
|
f(x)=\frac{x+4}{x^{2}+9}
|
f(x)=x^4+3x^3+5x^2+3x+4
|
f(x)=x^{4}+3x^{3}+5x^{2}+3x+4
|
inverse of f(x)=sqrt(2-x/(x-2))
|
inverse\:f(x)=\sqrt{2-\frac{x}{x-2}}
|
domain of f(x)=(x-2)^2
|
domain\:f(x)=(x-2)^{2}
|
g(x)=(x+7)/(x^2-4)
|
g(x)=\frac{x+7}{x^{2}-4}
|
f(x)=x-3/(x^2)
|
f(x)=x-\frac{3}{x^{2}}
|
y= x/(ln(x-2))
|
y=\frac{x}{\ln(x-2)}
|
f(x)=(x^3)/3+x^2-8x+2
|
f(x)=\frac{x^{3}}{3}+x^{2}-8x+2
|
y=2x^2+4x,(-2,0)
|
y=2x^{2}+4x,(-2,0)
|
f(x)=-(x+5)^2-4
|
f(x)=-(x+5)^{2}-4
|
y=\sqrt[3]{(2x-3)^2}
|
y=\sqrt[3]{(2x-3)^{2}}
|
f(x)=cos(2x+3)
|
f(x)=\cos(2x+3)
|
f(x)=sqrt(1+81x)
|
f(x)=\sqrt{1+81x}
|
y=30x
|
y=30x
|
inverse of f(x)=(3x+4)/(x-1)
|
inverse\:f(x)=\frac{3x+4}{x-1}
|
y=cos^2(2x-1)
|
y=\cos^{2}(2x-1)
|
f(x)=cos(2x-1)
|
f(x)=\cos(2x-1)
|
f(x)=x^2-12x+5
|
f(x)=x^{2}-12x+5
|
f(x)=(sqrt(x+3))/(x^2)
|
f(x)=\frac{\sqrt{x+3}}{x^{2}}
|
f(x)=x^2-12x-7
|
f(x)=x^{2}-12x-7
|
f(x)=((x-1)(x^2+4))/(x(x+1))
|
f(x)=\frac{(x-1)(x^{2}+4)}{x(x+1)}
|
f(u)=csc^2(u)
|
f(u)=\csc^{2}(u)
|
f(x)=5-3log_{3}(1-2x)
|
f(x)=5-3\log_{3}(1-2x)
|
f(x)=2^6
|
f(x)=2^{6}
|
f(x)=2x^5+2x^3-3x^2
|
f(x)=2x^{5}+2x^{3}-3x^{2}
|
extreme f(x)=x+1/x
|
extreme\:f(x)=x+\frac{1}{x}
|
f(x)=(x^3+1)/(3x+6)
|
f(x)=\frac{x^{3}+1}{3x+6}
|
Y(x)=-2x
|
Y(x)=-2x
|
f(x)=-2sin^2(2x)
|
f(x)=-2\sin^{2}(2x)
|
y= 5/8 x^3
|
y=\frac{5}{8}x^{3}
|
f(x)=x^4-x^3-13x^2+x+12
|
f(x)=x^{4}-x^{3}-13x^{2}+x+12
|
f(x)=sqrt(x+4)-2x-1
|
f(x)=\sqrt{x+4}-2x-1
|
f(x)=e^{(x^4)/4}
|
f(x)=e^{\frac{x^{4}}{4}}
|
y(θ)=sin(e^{-θ^2})
|
y(θ)=\sin(e^{-θ^{2}})
|
f(x)=2xe^{-x^2}
|
f(x)=2xe^{-x^{2}}
|
2a^2-a+4,(a=5)
|
2a^{2}-a+4,(a=5)
|
f(x)=(x^2-9)/(sqrt(x+3))
|
f(x)=\frac{x^{2}-9}{\sqrt{x+3}}
|
y=(2x+5)sqrt(4x-1)
|
y=(2x+5)\sqrt{4x-1}
|
y=(2x^2+7x+6)/(3x^2+10x-8)
|
y=\frac{2x^{2}+7x+6}{3x^{2}+10x-8}
|
f(x)=(5x-2)/(x+9)
|
f(x)=\frac{5x-2}{x+9}
|
f(y)=(18)/y
|
f(y)=\frac{18}{y}
|
f(x)=2x^2+7x+2
|
f(x)=2x^{2}+7x+2
|
f(x)=5sin(x)+3cos(x)
|
f(x)=5\sin(x)+3\cos(x)
|
f(θ)=-cos(2θ)
|
f(θ)=-\cos(2θ)
|
y=(10^x-10^{-x})/2
|
y=\frac{10^{x}-10^{-x}}{2}
|
y=sin(1/3 x)
|
y=\sin(\frac{1}{3}x)
|
y=x^{80}
|
y=x^{80}
|
y= 1/(-4)x+7/4
|
y=\frac{1}{-4}x+\frac{7}{4}
|
y=0.6x3-9.9143x2+52.271x-83.966
|
y=0.6x3-9.9143x2+52.271x-83.966
|
f(x)=|x-7|-3
|
f(x)=\left|x-7\right|-3
|
f(c)=c^{6/5}
|
f(c)=c^{\frac{6}{5}}
|
f(x)=x^5+x^4+2x^2-1
|
f(x)=x^{5}+x^{4}+2x^{2}-1
|
g(x)=x^5-3x^2+4x
|
g(x)=x^{5}-3x^{2}+4x
|
f(m)=5m^3
|
f(m)=5m^{3}
|
3x+14
|
3x+14
|
f(x)=-3x^4+6x^3
|
f(x)=-3x^{4}+6x^{3}
|
domain of f(x)= 4/(x-6)
|
domain\:f(x)=\frac{4}{x-6}
|
f(x)=6(3x^3+x^2)^3
|
f(x)=6(3x^{3}+x^{2})^{3}
|
f(x)=\sqrt[3]{x^7}
|
f(x)=\sqrt[3]{x^{7}}
|
y=-4x^2+3x+1
|
y=-4x^{2}+3x+1
|
f(x)=cos(1-3x)
|
f(x)=\cos(1-3x)
|
f(x)=(ln(x^2-1))/(x^2-1)
|
f(x)=\frac{\ln(x^{2}-1)}{x^{2}-1}
|
f(x)=(5x^2+3x-2)/(x^3-4)
|
f(x)=\frac{5x^{2}+3x-2}{x^{3}-4}
|
f(x)=(2x)/(x^2+5)
|
f(x)=\frac{2x}{x^{2}+5}
|
f(x)=3x^3-2x^2+4
|
f(x)=3x^{3}-2x^{2}+4
|
f(x)=3x^3-2x^2-1
|
f(x)=3x^{3}-2x^{2}-1
|
f(x)=(2x-6)/(x-4)+1
|
f(x)=\frac{2x-6}{x-4}+1
|
domain of f(x)=sqrt(2-\sqrt{54-3x-x^2)}
|
domain\:f(x)=\sqrt{2-\sqrt{54-3x-x^{2}}}
|
y=-(x-1)^3(x+3)^2
|
y=-(x-1)^{3}(x+3)^{2}
|
f(x)=(2x^2-x-1)/(-2x+x^2-8)
|
f(x)=\frac{2x^{2}-x-1}{-2x+x^{2}-8}
|
f(x)=sqrt(x)-sqrt(x-1)
|
f(x)=\sqrt{x}-\sqrt{x-1}
|
f(z)=1+z^2
|
f(z)=1+z^{2}
|
f(x)=6x^2+3x-1
|
f(x)=6x^{2}+3x-1
|
g(x)= 1/(x+6)
|
g(x)=\frac{1}{x+6}
|
f(x)=(4x^3)/(x^3+x^2-2x)
|
f(x)=\frac{4x^{3}}{x^{3}+x^{2}-2x}
|
f(x)=(2|x|)/(1+x^2)
|
f(x)=\frac{2\left|x\right|}{1+x^{2}}
|
f(x)=-3-4ln(x-3)
|
f(x)=-3-4\ln(x-3)
|
f(x)=sqrt(10-5x)
|
f(x)=\sqrt{10-5x}
|
midpoint (-1,6)(0,7)
|
midpoint\:(-1,6)(0,7)
|
f(x)=(x-sqrt(x))^2
|
f(x)=(x-\sqrt{x})^{2}
|
y=log_{5}(5^{log_{3}(x)})arcsec(x^2)
|
y=\log_{5}(5^{\log_{3}(x)})\arcsec(x^{2})
|
p(x)=2x+3
|
p(x)=2x+3
|
f(x)={2x-1:x>2, x/2+1:x<= 2}
|
f(x)=\left\{2x-1:x>2,\frac{x}{2}+1:x\le\:2\right\}
|