x^3
|
x^{3}
|
slope intercept of x+2y=6
|
slope\:intercept\:x+2y=6
|
perpendicular 3x+2y=14
|
perpendicular\:3x+2y=14
|
inverse of y=sqrt(x+1)
|
inverse\:y=\sqrt{x+1}
|
shift y=sin(x-(pi)/2)
|
shift\:y=\sin(x-\frac{\pi}{2})
|
extreme points of f(x)=x^4-7x^3-11x^2
|
extreme\:points\:f(x)=x^{4}-7x^{3}-11x^{2}
|
asymptotes of (2x)/(x-3)
|
asymptotes\:\frac{2x}{x-3}
|
extreme points of f(x)= 3/(x-5)
|
extreme\:points\:f(x)=\frac{3}{x-5}
|
range of f(x)=-x^2+4
|
range\:f(x)=-x^{2}+4
|
inverse of f(x)=ln(x-3)+7
|
inverse\:f(x)=\ln(x-3)+7
|
inverse of f(x)=-(0.009(x-220)^2-220)
|
inverse\:f(x)=-(0.009(x-220)^{2}-220)
|
midpoint (4,-1)(-1,-4)
|
midpoint\:(4,-1)(-1,-4)
|
range of f(x)= 2/(x^2)
|
range\:f(x)=\frac{2}{x^{2}}
|
asymptotes of f(x)=(x^2)/((x-1)^2)
|
asymptotes\:f(x)=\frac{x^{2}}{(x-1)^{2}}
|
slope intercept of x=3-3y
|
slope\:intercept\:x=3-3y
|
domain of f(x)= 1/(sqrt(3-2x-x^2))
|
domain\:f(x)=\frac{1}{\sqrt{3-2x-x^{2}}}
|
range of f(x)=-2
|
range\:f(x)=-2
|
inverse of f(x)=sqrt(x-2)-5
|
inverse\:f(x)=\sqrt{x-2}-5
|
inverse of y=\sqrt[3]{x-2}
|
inverse\:y=\sqrt[3]{x-2}
|
line (-1,4),(-1,7)
|
line\:(-1,4),(-1,7)
|
symmetry 2(x+3)^2-3
|
symmetry\:2(x+3)^{2}-3
|
domain of f(x)=(x+2)^2-1
|
domain\:f(x)=(x+2)^{2}-1
|
domain of f(x)=x^5-3x^3-sqrt(2)
|
domain\:f(x)=x^{5}-3x^{3}-\sqrt{2}
|
inverse of y=2^x-3
|
inverse\:y=2^{x}-3
|
asymptotes of y=(5x^2+46x-40)/(3x+30)
|
asymptotes\:y=\frac{5x^{2}+46x-40}{3x+30}
|
domain of log_{5}(log_{8}(x))
|
domain\:\log_{5}(\log_{8}(x))
|
shift tan(2x-(pi)/3)
|
shift\:\tan(2x-\frac{\pi}{3})
|
inverse of f(x)= 2/(x^2-1)
|
inverse\:f(x)=\frac{2}{x^{2}-1}
|
inverse of f(x)=4x^2-16
|
inverse\:f(x)=4x^{2}-16
|
inverse of f(x)=2ln(x^2+1)
|
inverse\:f(x)=2\ln(x^{2}+1)
|
intercepts of f(x)=e^{-x}
|
intercepts\:f(x)=e^{-x}
|
critical points of x^2-6x
|
critical\:points\:x^{2}-6x
|
inverse of f(x)= 2/(x+4)
|
inverse\:f(x)=\frac{2}{x+4}
|
asymptotes of f(x)=(3x^3-1)/(x^2-2x)
|
asymptotes\:f(x)=\frac{3x^{3}-1}{x^{2}-2x}
|
critical points of f(x)=4x^3-3x
|
critical\:points\:f(x)=4x^{3}-3x
|
domain of f(x)=(x-3)/(x^2+x-12)
|
domain\:f(x)=\frac{x-3}{x^{2}+x-12}
|
vertex f(x)=y=x^2+8x+18
|
vertex\:f(x)=y=x^{2}+8x+18
|
domain of f(x)=x3
|
domain\:f(x)=x3
|
domain of sqrt(x-2)
|
domain\:\sqrt{x-2}
|
intercepts of y=x^2
|
intercepts\:y=x^{2}
|
monotone intervals f(x)=x-4/(x^2)
|
monotone\:intervals\:f(x)=x-\frac{4}{x^{2}}
|
slope of 4x+3y=-2
|
slope\:4x+3y=-2
|
range of f(x)=|x|-2
|
range\:f(x)=|x|-2
|
parity f(x)=x^5-x^3
|
parity\:f(x)=x^{5}-x^{3}
|
inverse of f(x)=3x+2
|
inverse\:f(x)=3x+2
|
midpoint (5,3)(1,-5)
|
midpoint\:(5,3)(1,-5)
|
domain of f(x)=x+11
|
domain\:f(x)=x+11
|
range of ln(x)+6
|
range\:\ln(x)+6
|
domain of f(x)= 1/(10(\frac{1){x+2})-4}
|
domain\:f(x)=\frac{1}{10(\frac{1}{x+2})-4}
|
domain of f(x)=(2x-3sqrt(x)-2)/(4x-1)
|
domain\:f(x)=\frac{2x-3\sqrt{x}-2}{4x-1}
|
domain of f(x)=((x+3)^2)/(sqrt(4x-1))
|
domain\:f(x)=\frac{(x+3)^{2}}{\sqrt{4x-1}}
|
range of f(x)=|x^2-9|
|
range\:f(x)=|x^{2}-9|
|
line 1/3 x-3
|
line\:\frac{1}{3}x-3
|
inverse of y=3(x+1)
|
inverse\:y=3(x+1)
|
intercepts of f(x)=(16-x^2)/(5+x^2)
|
intercepts\:f(x)=\frac{16-x^{2}}{5+x^{2}}
|
inverse of f(x)=(x-5)^2,x<= 5
|
inverse\:f(x)=(x-5)^{2},x\le\:5
|
extreme points of f(x)=x(x-4)^2
|
extreme\:points\:f(x)=x(x-4)^{2}
|
x^2-x+1
|
x^{2}-x+1
|
domain of f(x)=sqrt(x)+sqrt(10-x)
|
domain\:f(x)=\sqrt{x}+\sqrt{10-x}
|
line (-3,1),(-1,-2)
|
line\:(-3,1),(-1,-2)
|
inverse of f(x)=(10)/(x-7)
|
inverse\:f(x)=\frac{10}{x-7}
|
intercepts of x^3-5x^2+x+35
|
intercepts\:x^{3}-5x^{2}+x+35
|
inverse of f(x)=5x^{1/3}-1
|
inverse\:f(x)=5x^{\frac{1}{3}}-1
|
asymptotes of (2x^2+18)/x
|
asymptotes\:\frac{2x^{2}+18}{x}
|
midpoint (9,-9)(3,3)
|
midpoint\:(9,-9)(3,3)
|
inverse of f(x)=8-1/x
|
inverse\:f(x)=8-\frac{1}{x}
|
line (2,0)(0,6)
|
line\:(2,0)(0,6)
|
range of-(7x)/(6x-5)
|
range\:-\frac{7x}{6x-5}
|
domain of sqrt(x-5)
|
domain\:\sqrt{x-5}
|
inverse of f(x)=((x+3))/(x+6)
|
inverse\:f(x)=\frac{(x+3)}{x+6}
|
asymptotes of f(x)=(-2)/(x+1)-1
|
asymptotes\:f(x)=\frac{-2}{x+1}-1
|
inverse of f(x)=4x^2-6
|
inverse\:f(x)=4x^{2}-6
|
shift-5cos(x/3+(pi)/2)-4
|
shift\:-5\cos(\frac{x}{3}+\frac{\pi}{2})-4
|
f(x)=x-2
|
f(x)=x-2
|
line (-1,3)(3,5)
|
line\:(-1,3)(3,5)
|
range of (-5x+25)/9
|
range\:\frac{-5x+25}{9}
|
symmetry 3/(x^2+3x-4)
|
symmetry\:\frac{3}{x^{2}+3x-4}
|
midpoint (6,4)(8,10)
|
midpoint\:(6,4)(8,10)
|
asymptotes of (x^3)/(x^4-1)
|
asymptotes\:\frac{x^{3}}{x^{4}-1}
|
inverse of 2ln(x-1)
|
inverse\:2\ln(x-1)
|
parallel y= 1/5 (x+4),\at (3,8)
|
parallel\:y=\frac{1}{5}(x+4),\at\:(3,8)
|
slope intercept of 4x-12y=-84
|
slope\:intercept\:4x-12y=-84
|
perpendicular y=-9x+9
|
perpendicular\:y=-9x+9
|
distance (-1,12)(6,7)
|
distance\:(-1,12)(6,7)
|
inverse of f(x)=ln(9x)
|
inverse\:f(x)=\ln(9x)
|
asymptotes of f(x)=(x^2-9)/(x+9)
|
asymptotes\:f(x)=\frac{x^{2}-9}{x+9}
|
inverse of f(x)=\sqrt[3]{x}-9
|
inverse\:f(x)=\sqrt[3]{x}-9
|
extreme points of f(x)=2x^3-3x
|
extreme\:points\:f(x)=2x^{3}-3x
|
range of f(x)=((x^2-1))/(x+1)
|
range\:f(x)=\frac{(x^{2}-1)}{x+1}
|
inverse of f(x)=(x+2)/(x+10)
|
inverse\:f(x)=\frac{x+2}{x+10}
|
range of cos(3x)
|
range\:\cos(3x)
|
intercepts of f(x)=(-x^2-4x+5)/(4x-4)
|
intercepts\:f(x)=\frac{-x^{2}-4x+5}{4x-4}
|
domain of f(x)=(sqrt(x-4))/(x-6)
|
domain\:f(x)=\frac{\sqrt{x-4}}{x-6}
|
parity f(x)=x^4+x
|
parity\:f(x)=x^{4}+x
|
inverse of sqrt(2x+3)
|
inverse\:\sqrt{2x+3}
|
parity x/(sin(x))
|
parity\:\frac{x}{\sin(x)}
|
inverse of f(x)=y=x^2+3
|
inverse\:f(x)=y=x^{2}+3
|
intercepts of (x^2-25)/(-2x^2-10x)
|
intercepts\:\frac{x^{2}-25}{-2x^{2}-10x}
|
shift-3sin(2x+(pi)/2)
|
shift\:-3\sin(2x+\frac{\pi}{2})
|
inverse of 9x+4
|
inverse\:9x+4
|