inflection points of f(x)= 1/(3x^2+8)
|
inflection\:points\:f(x)=\frac{1}{3x^{2}+8}
|
critical points of f(x)= 5/(x^2-49)
|
critical\:points\:f(x)=\frac{5}{x^{2}-49}
|
inflection points of f(x)=2x^3-3x^2+7x-4
|
inflection\:points\:f(x)=2x^{3}-3x^{2}+7x-4
|
slope of 4x-3y=9
|
slope\:4x-3y=9
|
inverse of y=6x-2
|
inverse\:y=6x-2
|
inverse of 5x+8
|
inverse\:5x+8
|
inverse of f(x)=-sqrt(4-x^2)
|
inverse\:f(x)=-\sqrt{4-x^{2}}
|
domain of f(x)=(2x)/(x+4)
|
domain\:f(x)=\frac{2x}{x+4}
|
range of y=(x-1)/(x^2-9)
|
range\:y=\frac{x-1}{x^{2}-9}
|
extreme points of ln(x^2+1)
|
extreme\:points\:\ln(x^{2}+1)
|
asymptotes of f(x)=(x+5)/(x^2-16)
|
asymptotes\:f(x)=\frac{x+5}{x^{2}-16}
|
asymptotes of f(x)=(x^2+3x-10)/(x^2-4)
|
asymptotes\:f(x)=\frac{x^{2}+3x-10}{x^{2}-4}
|
domain of f(x)=(3x+2)/(sqrt(x^2-7x))
|
domain\:f(x)=\frac{3x+2}{\sqrt{x^{2}-7x}}
|
inverse of f(x)=-1/3 x-6
|
inverse\:f(x)=-\frac{1}{3}x-6
|
symmetry f(x)=(x^2+1)/x
|
symmetry\:f(x)=\frac{x^{2}+1}{x}
|
range of f(x)=e^{x+1}-1
|
range\:f(x)=e^{x+1}-1
|
line (-3,0)(0,-2)
|
line\:(-3,0)(0,-2)
|
asymptotes of f(x)= 4/(3+x)
|
asymptotes\:f(x)=\frac{4}{3+x}
|
symmetry y= 5/x
|
symmetry\:y=\frac{5}{x}
|
monotone intervals f(x)=4x^{3/7}-x^{4/7}
|
monotone\:intervals\:f(x)=4x^{\frac{3}{7}}-x^{\frac{4}{7}}
|
midpoint (-8,4)(-4,-4)
|
midpoint\:(-8,4)(-4,-4)
|
critical points of f(x)=(x-9)^{2/3}
|
critical\:points\:f(x)=(x-9)^{\frac{2}{3}}
|
slope intercept of 3x-11y=-22
|
slope\:intercept\:3x-11y=-22
|
perpendicular 3y=2x+5
|
perpendicular\:3y=2x+5
|
asymptotes of f(x)=(2x)/(x^2-4)
|
asymptotes\:f(x)=\frac{2x}{x^{2}-4}
|
domain of f(x)=sqrt(14x^2+14)
|
domain\:f(x)=\sqrt{14x^{2}+14}
|
symmetry x^2-2x-11
|
symmetry\:x^{2}-2x-11
|
domain of (sqrt(3-x))/(sqrt(x-2))
|
domain\:\frac{\sqrt{3-x}}{\sqrt{x-2}}
|
intercepts of (e^x)/(x^2)
|
intercepts\:\frac{e^{x}}{x^{2}}
|
domain of f(x)=3^x
|
domain\:f(x)=3^{x}
|
inverse of f(x)=e^{4x+2}
|
inverse\:f(x)=e^{4x+2}
|
midpoint (8,-10)(2,-5)
|
midpoint\:(8,-10)(2,-5)
|
domain of f(x)=sqrt(x+4)+1
|
domain\:f(x)=\sqrt{x+4}+1
|
inverse of (122)
|
inverse\:(122)
|
inverse of f(x)=(-15-2x)/3
|
inverse\:f(x)=\frac{-15-2x}{3}
|
range of-1/2 x^2-2x+6
|
range\:-\frac{1}{2}x^{2}-2x+6
|
parallel y=-1/9 x+2,\at (3,1)
|
parallel\:y=-\frac{1}{9}x+2,\at\:(3,1)
|
domain of x/2
|
domain\:\frac{x}{2}
|
inverse of f(x)=10-3x
|
inverse\:f(x)=10-3x
|
extreme points of f(x)=2ln(x^2+3)-x
|
extreme\:points\:f(x)=2\ln(x^{2}+3)-x
|
range of f(x)= 1/(x+7)
|
range\:f(x)=\frac{1}{x+7}
|
domain of f(x)=8ln(x)-x^2
|
domain\:f(x)=8\ln(x)-x^{2}
|
inverse of y=2x-4
|
inverse\:y=2x-4
|
asymptotes of f(x)=-3/(x-2)-1
|
asymptotes\:f(x)=-\frac{3}{x-2}-1
|
parity 793
|
parity\:793
|
shift f(x)=3cos(1/2 pi x-pi)-3
|
shift\:f(x)=3\cos(\frac{1}{2}\pi\:x-\pi)-3
|
inverse of f(x)=x^5-6
|
inverse\:f(x)=x^{5}-6
|
critical points of f(x)=x^6(x-3)^5
|
critical\:points\:f(x)=x^{6}(x-3)^{5}
|
f(x)=x^2+x-6
|
f(x)=x^{2}+x-6
|
intercepts of f(x)=x^2+16x+60
|
intercepts\:f(x)=x^{2}+16x+60
|
intercepts of f(x)=-x^2+2
|
intercepts\:f(x)=-x^{2}+2
|
domain of f(x)=-1/3 (x+5)^2-4
|
domain\:f(x)=-\frac{1}{3}(x+5)^{2}-4
|
domain of f(x)=5(x+8)-5
|
domain\:f(x)=5(x+8)-5
|
critical points of (ln(x))/x
|
critical\:points\:\frac{\ln(x)}{x}
|
asymptotes of f(x)=(3x)/(x-1)
|
asymptotes\:f(x)=\frac{3x}{x-1}
|
inverse of f(x)=-1/5 x-2
|
inverse\:f(x)=-\frac{1}{5}x-2
|
periodicity of y=-5cos(x)
|
periodicity\:y=-5\cos(x)
|
asymptotes of f(x)=(x+5)/(x^2-25)
|
asymptotes\:f(x)=\frac{x+5}{x^{2}-25}
|
midpoint (3,7)(-8,-10)
|
midpoint\:(3,7)(-8,-10)
|
inverse of log_{10}(x)
|
inverse\:\log_{10}(x)
|
inverse of f(x)=(2-x^3)/5
|
inverse\:f(x)=\frac{2-x^{3}}{5}
|
inflection points of (x^2)/(x^2+1)
|
inflection\:points\:\frac{x^{2}}{x^{2}+1}
|
asymptotes of f(x)=(x-3)/(2x-7)
|
asymptotes\:f(x)=\frac{x-3}{2x-7}
|
inverse of f(x)=(8x)/(x^2+49)
|
inverse\:f(x)=\frac{8x}{x^{2}+49}
|
extreme points of f(x)=(x^2-9)^2
|
extreme\:points\:f(x)=(x^{2}-9)^{2}
|
critical points of f(x)=(x^2-9)^{1/3}
|
critical\:points\:f(x)=(x^{2}-9)^{\frac{1}{3}}
|
inverse of f(x)= 8/(x-1)
|
inverse\:f(x)=\frac{8}{x-1}
|
domain of y=|x|
|
domain\:y=|x|
|
line m=0.5,\at (4,-2)
|
line\:m=0.5,\at\:(4,-2)
|
asymptotes of f(x)=(x^2+1)/(x-3)
|
asymptotes\:f(x)=\frac{x^{2}+1}{x-3}
|
asymptotes of 4/((x-2)^3)
|
asymptotes\:\frac{4}{(x-2)^{3}}
|
asymptotes of f(x)=(-2x-7)/(3x-1)
|
asymptotes\:f(x)=\frac{-2x-7}{3x-1}
|
asymptotes of f(x)=(x^2-1)/(x^3-2x^2+x)
|
asymptotes\:f(x)=\frac{x^{2}-1}{x^{3}-2x^{2}+x}
|
domain of f(y)=sqrt(x-4)
|
domain\:f(y)=\sqrt{x-4}
|
asymptotes of f(x)=((1+e^{-x}))/(e^x)
|
asymptotes\:f(x)=\frac{(1+e^{-x})}{e^{x}}
|
parity xtan(x)
|
parity\:x\tan(x)
|
perpendicular y=4x+8,\at (4,-1)
|
perpendicular\:y=4x+8,\at\:(4,-1)
|
shift f(x)= 1/2 cos((2pi)/3 x-1/5)
|
shift\:f(x)=\frac{1}{2}\cos(\frac{2\pi}{3}x-\frac{1}{5})
|
inverse of f(x)=-4x-8
|
inverse\:f(x)=-4x-8
|
domain of (x/(x+8))/(x/(x+8)+8)
|
domain\:\frac{\frac{x}{x+8}}{\frac{x}{x+8}+8}
|
domain of x^2sin(1/x)
|
domain\:x^{2}\sin(\frac{1}{x})
|
asymptotes of f(x)= 1/2*4^x+1
|
asymptotes\:f(x)=\frac{1}{2}\cdot\:4^{x}+1
|
asymptotes of f(x)=((6+x^4))/(x^2-x^4)
|
asymptotes\:f(x)=\frac{(6+x^{4})}{x^{2}-x^{4}}
|
domain of f(x)=sqrt(x^2-4)
|
domain\:f(x)=\sqrt{x^{2}-4}
|
extreme points of f(x)=9x^2+2x^3
|
extreme\:points\:f(x)=9x^{2}+2x^{3}
|
asymptotes of f(x)=(4x^4)/(2x^2-3)
|
asymptotes\:f(x)=\frac{4x^{4}}{2x^{2}-3}
|
asymptotes of (12x^4+10x-3)/(3x^4)
|
asymptotes\:\frac{12x^{4}+10x-3}{3x^{4}}
|
extreme points of 1/2 (3x-1)
|
extreme\:points\:\frac{1}{2}(3x-1)
|
asymptotes of f(x)=(x+9)/(x^2-81)
|
asymptotes\:f(x)=\frac{x+9}{x^{2}-81}
|
domain of f(x)=(x+9)/(x^2-18x+81)
|
domain\:f(x)=\frac{x+9}{x^{2}-18x+81}
|
domain of f(x)=((1-3x))/(2+x)
|
domain\:f(x)=\frac{(1-3x)}{2+x}
|
slope of 2y=3x+5
|
slope\:2y=3x+5
|
extreme points of f(x)=3x^4-12x^2+9
|
extreme\:points\:f(x)=3x^{4}-12x^{2}+9
|
midpoint (8,-6)(7,-8)
|
midpoint\:(8,-6)(7,-8)
|
range of f(x)=\sqrt[3]{x+1}+5
|
range\:f(x)=\sqrt[3]{x+1}+5
|
midpoint (-2,5)(10,0)
|
midpoint\:(-2,5)(10,0)
|
midpoint (-1,4)(6,1)
|
midpoint\:(-1,4)(6,1)
|
inverse of f(x)=8x^3-10
|
inverse\:f(x)=8x^{3}-10
|
domain of f(x)=sqrt(1+9/x)
|
domain\:f(x)=\sqrt{1+\frac{9}{x}}
|
domain of f(x)=(sqrt(x+4))/(x-2)
|
domain\:f(x)=\frac{\sqrt{x+4}}{x-2}
|